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FOREWORD

This study was conducted by the Department of Oceanography at Texas A&M
University, Reference 85-2-T. The research was conducted through Texas A&M
Research Foundation Project 4667.

This study was motivated by the fact that existing storm surge models
which are generally restricted to a limited reach of the continental shelf
do not adequately simulate the forerunner surge. In the Gulf of Mexico the
forerunner stage of a surge event (which can have an amplitude as large as
1 m) can precede the peak surge by more than 24 hours.

It is common practice, in employing coastal surge models for design
purposes, to start computations with an initial non-~zero constant water
level field over the shelf in recognition of the influence of forerunners.
This procedure makes no allowance for initial flows or gradient thereof
which must exist during the forerunner stage. On the other hand, starting
local coastal models well in advance of the arrival of the hurricane at the
shelf break cannot simulate the forerunner surge since the latter is ex-
cited by mechanisms acting over the adjacent deep basin seaward of the
coastal zone being modeled.

The objectives of this research were to determine for the Gulf of
Mexico the space and time scales of forerunners, examine possible excita-
tion processes, and evaluate the role of baroclinic modes in surge events
at the coast and shelf break. A numerical approach was used in this study
which modeled hurricane-forced responses of the barotropic and first baro-
clinic modes over a computing domain representing the Northwest Cayman Sea
and Gulf of Mexico. The inclusion of the baroclinic response adds a degree
of realism lacking in previous studies on hurricane effects in the Gulf of

Mexico.




It should be stressed that the model includes only wind and atmospheric
pressure forcing. Tidal forcing was not included. Moreover, the model is
quasi~linear (only the bottom and interface stresses are monlinear). The
model was verified by simulating the Gulf's response to hurricanes Carla and
Allen. Although the focus of the study was on forerunner surge events, the
results also provide insight into fundamental concepts concerning the large-
scale, low-frequency free modes in the Gulf of Mexico and Cayman Sea.

This study also constitutes the doctoral dissertation research of one

of the authors, Mahunnop Bunpapong.
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CHAPTER I

INTRODUCTION

1. Background

Redfield and Miller (1957) considered the changes in water level
associated with hurricanes as consisting of three successive stages;
the forerunner surge, the hurricane surge and the resurgence. The
forerunner surge is the gradual rise in water level along the coast
which precedes the arrival of the hurricane. It occurs while the
storm center is at a great distance from the coast, irrespective of
whether the storm reaches the point of observation. The gradual
buildup of water level may reach one meter., This may seem
unimportant in a destructive sense when compared to the hurricane
surge itself, but it is an important initial boundary condition for
local storm surge models.

The salient feature of forerunners is that local atmospheric
forcing is not required for this phase of the surge. Cline (1920)
reported the existence of forerunner surges in the Gulf of Mexico.
He analyzed water levels and winds associated with hurricanes from
the 1900-1919 period and found that some storms clearly produced
increasing sea level within 24 h of the disturbance entering the
Gulf. Cline postulated that forerunners are related to swell
generated by Gulf hurricanes. Based on a simple wind model, Cline
showed that the storm generated swell (forerunner) would be
significant only in the direction of the hurricane motion. The data

presented by Cline, however, suggest the nearly simultaneous




appearance of forerunners over a long stretch of the United States
Gulf coast.

Forerunners in a basin like the Gulf of Mexico may be explained
in terms of the large scale barotropic normal gravity modes of the
Gulf. Even though the Gulf is relatively small, the size of
hurricanes still gives a mismatch of forcing and response scales.
However, normal mode excitation is not limited to open ocean
atmospheric forcing in the Gulf of Mexico. Platzman (1972) obtained
a long-period Helmholtz mode of 21.2 h in a numerical study of the
Gulf. Reid and Whitaker (1981) also obtained a Helmholtz mode for
the Gulf, but with a period of 28.5 h. This mode is characterized by
nearly uniform phase and amplitude, except near the ports}' This is
indicative of a co-oscillating port-driven Gulf-Caribbean system.
Conceivably, some hurricanes could provide port forcing to elicit
this long period motion.

Another possible large scale barotropic response of the Gulf to
hurricane forcing typically has relatively small surface expressions
but large vorticity (circulation). These are the vorticity modes
generated by planetary or topographic vortex stretching and they have
been observed in enclosed basins. Saylor et. al (1980) found that
the observed oscillation in Southern lLake Michigan with a period of 4
days was a lake-wide barotropic topographic vortex mode.

Calculations show that if the response of the Gulf of Mexico to a
hurricane was a Gulf-wide barotropic vortex mode it would have a
period of about 5 days. Muller and Frankignoul (1981) however,

showed that realistic topography causes the vorticity modes to have

L The term "ports" denotes the model representation of the Yucatan and

Florids Straits.
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smaller space scales compared to the gravity modes.

The development of forerunners in the Gulf might be caused by
the strong baroclinic response of the sea to hurricane winds.
Stevenson and Armstrong (1965) and Leipper (1967) presented
descriptions of hurricane induced upwelling in the Gulf and provided
qualitative depictions of the causative mechanisms. Oceanic
baroclinic responses to hurricane forcing have been the subject of
numerous theoretical and numerical investigations (Ichiye, 1955). 1In
addition, Veronis and Stommel (1956) speculated that a two-layer
ocean with constant depth would exhibit a baroclinic response to a
distant storm. However, changes in the interface elevation would be
small provided that there were no other effects such as resonance.
The only noticeable effect would be changes in the free surface
anomaly contributed by barotropic Rossby waves.

The single study on forerunner surges in the Gulf by Cline
(1920) leaves several fundamental questions unanswered. It is not
clear that all hurricanes traversing the Gulf generate forerunners.
If not, under which conditions are forerunners excited? What are the
time and space scales of forerunners? Conflicting evidence suggests
both local and Gulf wide occurrences. Finally, are forerunners
barotropic or baroclinic in origin? To date, only the barotropic
response on the perimeter of the Gulf to hurricane forcing has been
sufficiently studied.

As already pointed out, the forerunner questions are important
in establishing /nitia/ conditions in hurricane surge prediction at

the coastline. Most hurricane surge models employ limited area




domains, namely a section of the continental shelf extending from
shore to the shelf break at about the 200 m depth contour and
extending several hundred kilometers along shore on either side of
the coastal location for which surge prediction is sought. A second
problem with such models is that of specifying appropriate boundary
conditions at the open boundaries, particularly along the seaward
shelf break positions. A common seaward boundary condition is to set
the water level along the shelf break equal to the static
barometrically-induced anomaly appropriate to the position relative
to the hurricane center. However, this ignores any dynamically-
induced water level anomaly by the storm in the deep region of the

sea or Gulf.

2. Objectives

There are three objectives of this research effort. First, the
investigation is directed toward establishing the cause as well as
the time and space scales of forerunners in the Gulf of Mexico.
Second, the relation between hurricane generated barotropic and
baroclinic modes and forerunners is sought. Third, the clarification
of conditions at the shelf break is addressed. All of these
objectives will be carried out within the framework of a basin wide

model which includes the Gulf of Mexico and the Cayman Sea.



3. Procedure

As a result of uncertainty in the type of response, it is
prudent to include the effect of density stratification in the
formulation of the problem. To allow for the first baroclinic mode
in the solutions, a two-layer model with variable depth was chosen.
An analytic approach to the problem of hurricane forcing in a basin
with realistic bathymetry and shape is not possible. Therefore, a
numerical approach was used in this study. An existing linear
numerical model for astronomical tides in the Gulf of Mexico ,GOMT,
(c.f. Reid and Whitaker, 198l1) was adapted to include both the
barotropic and baroclinic computations and atmospheric forcing.
Information obtained from the numerical model, which is usually
unavailable from the recorded data, allows a detailed investigation
of the dynamics and other characteristics of the response. Another
important advantage of the numerical model is its predictive
capability.

Instead of using the primitive equations describing the two-
layer system, normal mode equations were derived using a
generalization of the method employed by Veronis and Stommel (1956).
There are several advantages in working with the modal form of the
equations. In this system the dynamics and energetics of each mode
can be examined separately. Interaction between modes, due to
coupling caused by varying depth, can be investigated in terms of
energy transfer. Open boundary conditions are facilitated in terms
of the modes, particularly if outward radiation of wave energy is

allowed. 1In addition, the layer variables such as the free surface




and interface anomalies can be easily retrieved from the modal
variables. Therefore, analyses can be made both in terms of layers

and modes.




CHAPTER II

THEORETICAL AND NUMERICAL MODEL

l. Theoretical model

a) Basic equations

The vertically integrated momentum and mass conservation
equations for quasi-hydrostatic (large scale) disturbances in a two-

layer variable depth basin are, for the upper layer,

-~ 5 - -
-
and for the lower layer,
> > 2 -
-

-
where M is the mass transport per unit width, f is the Coriolis
-5
parameter, k is the vertical unit vector, p is the water density,
g is the gravitational acceleration, H is the mean depth, H+h is the

->
instantaneous depth, F is the external forcing and dissipation

defined as:
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Here : is the stress vector where subscripts s, i, and b stand for
surface, interface, and bottom, respectively. The atmospheric
pressure at the sea surface is P,.

The normal mode form of the equations can be derived from these
primitive equations by a method similar to that employed by Veronis
and Stommel (1956). To transform (1) and (2) into normal mode form,
we multiply (1) and (2) by a and (3) and (4) by f and add the
corresponding momentum and mass conservation equations, respectively,

to obtain

> 5 5

-’
‘[(Plhl+01h2)V(0H1)+(Plhl+P2h2)V(ﬁH2)]} = G, (6)
-3 5
3¢/3t + aV-M; + VM, = O, n
where
- - -
M = aMl + ﬁMz,
¢ = apih; + Bpyhgy, (8)
- - >
G = aFl + ﬁFz.

Note that ¢ and § are non-dimensional and, for the case of variable
depth, may depend upon x and y (this is the generalization of the
Veronis and Stommel analysis).

The constraint imposed on e and § to make the elevation

anomalies in (6) and (7) proportional, is

aH; (pyhy+pyhy) + BHo(phi+pohy) = To, (9



where I', a factor of proportionality, is an equivalent depth to be
determined. Since ¢ = aplhl + 5p2h2, then (9) will be valid for all

combinations of hl and hz if

|1}

aHy + BHy I'a, and (10a)

aHl<Pl/Pz) + ﬁHz rg. (10b)

It can be readily shown that (6) and (7) can be written in the form

- -+ o > -
oaM/0t + fkxM + gI'V¢ - B = G, (11)
-
dp/dt + V.M -C = 0, (12)
where
..’
B = gI‘(plhlVa. + pthVﬁ) , and
(13)
- -
C = Ml'Va + Mz’Vﬁo

For the case of constant layer depth Hy, Hy, the a and § are
->
constant and B, C vanish. In general these terms produce coupling of
the modes in the presence of bottom topography.

Egs. (10a,b) can be written in matrix form as

Hl—F Hz a 0

(14)

(Pl/Pz)Hl Hz‘r g 0

and hence the eigenvalues of T are the roots of the characteristic

equation




r2 - Dr + e¢HyH, = 0, (15)

where D is the total depth at rest (H{+Hy), and ¢ is the relative
density difference, (pp=p1)/Py.
The two roots of (15), which correspond to the equivalent depths

for external and internal modes, are

Ty = D[l-e(H{H,/D?) + 0(e?)] , and
(16)
[; = e(HyHy/D)[1+e(H Hy/D?) + 0(e2)].
Since HlHZ/DZ < 1 and ¢ << 1 for the general ocean basin, then
Fe ~ D, and
(17)

are the equivalent depths for external and internal modes as obtained
by Veronis and Stommel (1956). In general these may depend on x,y.

The ratio of a and § can be determined from (10a,b) as

Substituting (17) in (18), the ratio (a/8) for each mode is

(8/a) 1 - e(H;/D) - e*(H?H,/D3) , and

(19)

i

(B/a); = -Hy/Hy + e(H1/D) + e2(uln,/p3).

Note that a, and f, are of like sign, but a; and §; are of opposite

sign. @or B, a; are chosen to be positive and B; to be negative.

10



Veronis and Stommel (1956) took ag = a; = 1 for a constant depth
basin. However, the presence of coupling terms g and € in (11) and
(12) due to varying depth in the present study precludes an arbitrary
choice of a. Notice that both ¢ and 8 are functions of x and y.

The procedure used to determine the individual values of ¢ and §
for both modes is based on energy considerations. In essence the
energy equations derived from the primitive equations and the normal
mode equations must be consistent.

The two energy equations formed from the primitive equations and

the normal mode equations, respectively, are

->
a(Ek+Ep)/at + V.J = §, (20)
where
Ey = 3a(pihy? + 2p1hihy + pohy?),
Ep = %[(Mlz/PlHl> + (M%/PZHZ)I
(21)
- - -+
J = g[(hl+h2)Ml + l/Pz(Plhl\"’chz)MzL
4 o - o
S = My-Fy/pyHy + My-Fy/poHy.
and
_’
B(ER+EL)/0t + V-J =T = S . (22)

Equation (22) contains not only the additional term T, but the
expressions for the kinetic energy per unit area, Ep, the potential

-5
energy per unit area, the energy flux per unit width, J, and the

Ep,
net energy supply per unit width per unit time, S, are also different

from those given in (21). The added term, T, which defines the

11




energy transfer between modes, and the other terms in (22) are

defined as follows:

> o -+ -

T = 1/py[(Mg-Bo/Tg)+e(M; +By/T;)+g(9CotedCy) ]

E, = 1/p,[(M3/T.) + e(M3/T;)]

kK Pol\lla/ e i/ti)d

Ep = 1/p59(82 + €2,

- - >

J = g/py(eMg + €diM;),
- -

S = 1/92[(Me'Ge/re)+e(Mi'Gi/ri>]'

where Ge and Gi are defined in (31).

(23)

(24a)

(24b)

(24c)

(24d)

If (20) and (22) are to be consistent, their corresponding terms

must be equal and T must be zero. Inserting (8a) to (8c) in (24a) to

(24d) it can be shown that the necessary conditions that E; as well

> -
as S in (20) and (22) are consistent for arbitrary h,;, hp, M;, and M,

are that
2 2 -
Qe /Fe + eaj /Fi = l/Hl(Pz/Pl):
B2/Ty + €B32/Ty = 1/Hy,
aeﬁe/Fe + eaiﬁi/ri = 0.

->
It is also necessary, for consistency in E_ and J, that

P
ae2 + eaiz = p1/Py,
B2 + ;2 = 1,

aeﬁe + eaiBi = 1.,

i2

(25a)

(25b)

(25¢)

(26a)

(26b)

(26¢)




The requirement that T must be zero can be examined by substituting

(13) in (23) and rearranging to yield,

- 2 2 > >
T = plthl-V(ae +eay ) + (plth2+p2h2Ml)-V(aeﬁe+eaiﬁi) +

poh ﬁ V(B 2+eﬁ-2) 27)
27122 e i/

Using conditions (26a) to (26c), it can be shown that T vanishes
provided that the ratio p2/pl is constant. Therefore, (25) and (26)
assure that (20) and (22) are entirely consistent with T equal to
zero and all other terms are identical. These two sets of equations
will also be used to determine ¢ and 8.

From (25a),(25b) and (26a),(26b) we find

ae? = pole/pBy[(H-T)/(T-T 1,
(28)
B2 = To/Hy[(Hy=T;)/(Tg-Tp1,
and
a;2 = pyTi/epiHy [(Tg=H1)/(Te-T) ],
(29)
8;2 = Ty/eHy[(Tg-Hy)/(Tg-Tp)1.
It is not difficult to show that the ratios (B/a), and (8/a);
obtained from (28) and (29) are the same as those in (19). If we
substitute (16) in (28) and (29), we obtain the relation for a and
B,accurate to order e, in terms of Hy, Hy, and D as follows:
@ = 1+ %e - 5e(Hy/D)2 + 0(e?), (30a)
B = 1- 3e(H1/D)2 + 0(e?), (30b)

13




[~
I

i = Hy/D{lsde + e[(H;H,/D?)~3(H;/D)] + 0(e2)}(300)

B; ~Hy /D{l+e[ (B H,/D?)~§(Hy/D)] + 0(e2)}  (30d)

Note that positive roots are chosen except for ﬁi. Using a and 8
from (30) it can be verified that (25¢c) and (26c) are correct to the

order e.
b) Normal Mode Equations

To express Egs.(1ll) and (12) with all dependent variables in

terms of modes, (8) is rewritten for each mede as:

- - -
Mg = agMy + fMy
- > -
Mj = aiMy + BiMy
b = agPiDy *+ Bepohy
(31)
¢3 = @jpihy + Bipohy
> -
Ge = agF; + BeF2
- >
Gy = a3F; + B;F;.
It readily can be shown from (31) that
pih; = r(fa9; ~ ﬁi¢e)
pohy = r(-agé; + ajée)
(32)
-+ - -
My = r(BgMy — B;Mp)

14



- - >
Mz = r(—aeMi + aiMe),

where r = (a;B - agf;)”t. Using (30a) to (30d), the factor r is

(pl/pz)l/2 to order e and

-5,
h; = [¢ + (Hl/D)¢e](plp2)
4,
hy = [(GHZ/D - e + (HZ/D)¢e](plp2)
(33)
- -> -
M; = (H;/D)Mg + M;,
> - -
Mz = (HZ/D)ME - Mi.
Using (31) and (32) the coupling terms defined by (13) can be
approximated by,
->
Be =~ rgFee¢iV(Hl/D),
_)
By = -gT;6eY(H;/D),
(34)
-)
Ce =~ rGMi’V(Hl/D),
->
Ci = —Me'V(Hl/D>.

These forms show clearly that the external mode is influenced by
the internal mode and vice versa when H,/D is variable.

It can be shown by substituting (34) in (23) that the energy
transfer between modes, T, i1s zero as required.

Finally, the forcing terms E can be approximated by using (5),

(8), and (31) as:

15



- 2>
Ge = Tg - Tp "~ DVPa + 0(e),
(35)
- > -
Gi = (HZ/D)TS + (Hl/D)Tb - Ti + O(G)-
- -
The kinematic counterparts of M, ¢, 7 and p, are defined as
- -> > -
Qe = M/p, Q; = Mi/e,
Ve = 0o/P: vi = ¢5/p,
(36)
-> - -5 -
Ty = Ts/p, T; = Ti/p,
> -
Ty, = 7i/ps -Vp /p = gVb,

The variable b in (36) is the barometric pressure deficit expressed
in terms of an equivalent head of water (sometimes referred to as the
inverted barometric effect).

The normal mode equations (11) and (12), therefore, take the

form

- -5 Y
3Qg/0t + fkxQg + gDVy, - egDy;V(H;/D) (Tg - Ty + gDVb),

37

]
o

- -
dYo/3t + V+Qq = €Q; +V(H;/D)
and
- QN > - >
0Qs /ot + fkxQ; + gTyVy; + gl ¥ V(H/D) = (Hy/D)Tg + (H /D)Ty = Ty,
(38)

- -
BY; /0t + V-Q; + Qg V(H}/D) = O,

where T'y is given in (17).
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2. Numerical model

a) Grid system

A space-staggered computational mesh is employed in the
numerical analogs of the normal mode equations (37) and (38). The
grid spacing is taken as 15' x 15' in latitude (A$) and longitude
(AX). The modal transport per unit width, represented by U, V for
east and north components, respectively, is located at the mid points
of the appropriate sides of each grid block. The modal water level
anomaly, ¥, is defined at the middle of each grid block. Figure 1
illustrates locations of these variables whose positions are
identified by I,J and time is indexed by n. The grid spacing is
taken as the distance between the same variables, thus consecutive U,
¥ values are at half increments of I and consecutive V, ¢ values are
at half increments of J. The depth is stored at every variable
location.

The grid system used in this stuvdy is the same as that used in
the Gulf of Mexico Tidal Model (Reid and Whitaker, 1981). It
nominally covers 70 x 50 grid blocks for the Gulf of Mexico and the
northwest portion of the Caribbean Sea (Cayman Sea) as shown in Fig.
2,

The depths of the Gulf of Mexico were digitized from bathymetry
charts prepared by Buffler et al. (1984). The Cayman Sea depths were
taken from available hydrographic charts. Depth over most of the
Cayman, especially near the open boundaries to the east and south,

was taken as 4000 m. Figure 3 shows the computer plotted contours of
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the digitized depth field. Special care was observed when comparing
the digitized depth fields to the bathymetry chart, especially in the

shelf break regions and modifications were made where necessary.
b) Numerical integration scheme

The multioperational alternating direction implicit algorithm
developed by Leendertse (1967) was adopted for time integration of
the finite difference equations. The following notation is used in
the discussion. The spatial average of a field variable X is
written as

X0(1,3) = X(1-%,3-0)+X(1+%, 35 +X(1-3, 3+ +X(3+d, 3+5) 1, (39)

where X™(I,J) = X(Ao+IAX,$o+JA®,to+nAt). Time and space derivatives

are depicted by the standard centered differences,

aX/at = (1/At) [XP*i(1,5)-x*"1¢1,3)],

(40)
3X/3\ = (cos&/AN) [XP(I+%,3)-X"(1-5,3)].
A spherical coordinate system is employed in representing the
gradient terms on a level surface, i.e.,
VX = (1/a6(3)){3X/3% a + 6(J)3X/an b} (41)

_)
where X is any scalar field variable, a is a unit vector along lines
-5
of constant ¢, b is a unit vector along lines of constant A, and

0(J) = cos(P.+JAP), where $o is the reference latitude (18°N).
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The cycle of calculation is separated into two operations.
During the first-half cycle, at odd time steps, ¢ and U are computed
implicitly along lines of constant latitude, followed by an explicit
computation of the V field. For the second half-cycle, the
computations proceed along lines of constant longitude with ¢, V
updated implicitly and U computed explicitly. In each half-cycle,
the external mode computations are executed first and, after
completing the entire computing domain, are repeated for the internal
mode.

The implicit formulation of the finite difference analogs of the
external mode momentum and mass conservation equations, respectively,

are, for odd time steps,

1 n+l 1 n+l 1 n+l 1
'7x(I"z,J)We(I-z,J) + Ue(I,J) + 7x(I+g,J)¢e(1+2,J)

= UN(I,3)+28LE(I)VI(I,T) + AtF+ x;, and  (42)
n+l 5 n+l n+l 4
~0g (DUG(I-5,3) + Yo (I,0)+ v, (NUL(I+5,3)
= Va1, 3) - g8 Va(L, ) + &y, (43)

and for even time steps
1. D+l 1 1 n+l 1, ¥l 1 1
—7Y(IIJ“2)We(IrJ"Z)9(J7) + Ve(IrJ) + 7y(IrJ+'2')\;l/e(IrJ""‘z)9(J+‘z)

= VB(L,J) - AtE(DUD(I,JT) + x;+ AtFg, (44)

1., 0+1 1 n+l 1., 071 9
~0y (F-PIV (I, 3-3) + Yo(T,0) + vy (J+5)Vo (I, 3+5)

=Yg - v 8, UR(I,T) + &y, (45)
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where

1(I,3) = (At/AN){gD(I,3)/a8(D)},
1y(I,3) = (At/A%){gD(I,J)/a6(I)},
v () = (At/AN) {1/a6(D)},
v (3) = (At/A%){1/a6()},
8,UR(1,3) = UB(1+3,3) - UB(1-%,3),
8,VA(I,3) = VA(I,I+5)6(I+p) - VA(I,I-$)6(I-9),
a = radius of the Earth,
£(J) = 29s5in(&o+JA%),
F = forcing and friction terms,
X,¢ = coupling terms.

The forcing and coupling terms will be discussed in the next section.
The coupling terms in (42) and (43) or (44) and (45) are of opposite
mode relative to the other terms.

Upon replacing the total depth, D, by the equivalent depth,
eHle/D, interchanging modes of all field variables and coupling
terms, and using the proper forcing terms, (42) through (45) are also
representations of the implicit formulation for the internal mode
computation.

The explicit coding of the external mode momentum equation at

odd time steps is

23




n+l =n+1l =
Vo(I, ) = VB(I,3) - %At £(){U (I, 3) + vB(I,n}
~1g (T, 08 ¥a(1,3) + X3 + OtFg. (46)

The even time step counterpart of (46) is

n+l =n+l =
U (I3 = ul(r,3) - $at £ {V (I, + VB, M}

~7x(1,3)8,02(1,J) + x; + At F. (47)

Likewise, the explicit coding, at odd and even time steps,
respectively, for the internal mode computation is obtained by
replacing the total depth by the equivalent depth, interchanging
modes of all field variables and coupling terms, and employing the
proper forcing terms in (46) and (47).

Egs. (42) and (43) or (44) and (45) form a system of linear
algebraic equations in the collective I or J, depending upon time
step, of ¥ and either U or V at time level n+l. The coefficient
matrix is tridiagonal for which there exists a double sweep solution
algorithm for inversion, provided that boundary conditions on U or V
or some combination of conditions on U or V and ¢ are supplied at

each end of the array of variables.
c) Surface, interface, and bottom stress

The forcing term F in (42) and (44) consists of the surface
stress, the bottom stress and either the atmospheric pressure force
due to a surface pressure deficit for the external mode forcing or
the interface stress for the internal mode forcing, respectively.

That is
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- -
F = T_ - Ty + gbVb, or

e ]
(48)
_ H2 - Hl > -
Fi = (T *+ (g)Tp ~ Ty
The stress terms are presented in the form
- - -
T = k|W|W. (49)

-)
For the surface stress, W is the wind speed at an elevation of
10 m above the water surface. Reid and Bodine (1968) considered k as

a function of wind speed in the form

-
K = Ky for |W| < W

(50)

v

W

&
fl

> 2 -
Ky * ko(L-Wo/|W[)  for W] 2 W,

where k; and k, are taken as 1.1 x 107 and 2.5 x 10"6, respectively,
and W, is a critical wind speed which is taken as 7.0 m/s. The

coefficient k is related to the drag coefficient, Cp by the relation
K = (Pa/Pw)CD (51)

where Py is air density and p, is water density.

For large wind speed, k approaches the limiting value of 3.6 x
107® which corresponds to a drag coefficient of about 3.0 x 1073 if
the density ratio between air and water is assumed to be 1.2 x 1073,
Equation (50) was used by Wanstrath (1975) in his simulation of storm
surge in transformed coordinates while Miyasaki (1963) used a
constant 3.2 x lO'6 for k¥ in his computation of storm surge for

-
hurricane Carla. The choice of k for intense winds (|W|2 50 m/s) is
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controversial. However, taking into account that wind speeds
associated with hurricanes are not steady or uniform, kx is taken as a
function of wind speed.

The surface wind stresses are computed at every time step using
linear interpolated positions of the hurricane center which are given
at 6 h intervals, except for the case of hurricane Carla simulation
which will be discussed later. A constant inflow angle of 20° is
used to rotate the surface stress vector before the components are
computed.

For the bottom stress, % is the depth averaged lower layer
current velocity, i.e.

- + o

where |32] is the magnitude of the depth averaged lower layer
current. A constant value of 2.5 x 1073 is assumed for the
coefficient k. The lower layer current, |32| is given in terms of
the modal velocities by the relation

> > -

- -
where V, and V; are the external and internal velocity vectors,
respectively.

The bottom stress for the external mode computation at odd time

steps is coded as

_ n-1 -1
T, = 2.5 x 1073At{[(1/D)Ua(T, ) - (L/HpU;(T,3) 12

=n-1 =n-1 % -1
+ [A/DIVR(T,3) = (1/BV; (1,012 2{-(1/0)U5 (T, D}, (58)

Upon substituting (53) in (52) both Ug and U; from the previous time
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step are used in |32| while only the previous value of U; is used in
32. This implies that the coefficient of U on the left hand side of
(42) has to be changed from a constant value of 1 to 1 - 2.5 x
10'3(At/D). However, the tridiagonal form of the coefficient matrix
is retained.

At even time steps, coding for the bottom stress is obtained by

directly interchanging U and V to obtain

-3 n-1 n-1 2
Tp = 2.5 x 107 At{[(1/D)V(I,T) - (1/Hy)V;(I,T)]

=n-1 =n-1 2 % n-1
+ [(A/DIV(I,3) - (L/BU (I, 1) 1434 {~(1L/Hy)V (I, 3)}.  (55)
The bottom stress for the internal mode computation is depicted as

-3 n-1 n-1 2
Ty = 2.5 x 107°At{[(1/D)U(I,3) - (1/Bx)U;(I, D]
=n-1 =n-1 3 -1
+ [W/DIV(T,3) - (L/H)V; (L, 121 {Q/DUNT, D} (56)
__3 n"l n"’l 2
Ty = 2.5 x 107 At{[(1/D)V (I,3) - (1/Hy)V,(I, )]

=n-1 =n-1 : -1
+ [(/DIT(T,3) = (/B UL, D I 2LA/DIVA(T, P (57)

for odd and even time steps, respectively.
-
The velocity vector W in the interface stress is the internal
mode volume transport per unit width multiplied by the appropriate

depth
-~ >
W = (D/H Hy)Q, (58)

A constant value of 2.0 x 107° is assumed for the friction
coefficient, k. The finite difference form of this stress is, for

odd time steps,
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]
It

1
-1 =n-1 -1 =n-1
2.0 x 1075{[U; (1,3 12+ [V} (1,3 123 2{U} (T, 1)+V; (1,0},
and (59)

- 1 :
2.0 x 1075{[v}(1,3) 12+ [v}(1, 1 122 vicL, oy +ular, o},

H
]

for even time steps.
d) The coupling terms

The coupling terms are coded based on the premise that the
energy transferred between modes due to coupling must be balanced.
The energy equations are formed by multiplying (37a,b) and (38a,b) by

- -
Qe/Dy g¥er Q;/T;, and egy;, respectively, and thus the coupling terms

appear as

->

-egy;QV(H, /D) (60a)
- ,

~egy0; V(H,/D) (60b)
->

egy;Q; V(H,/D) (60c)
-

€gV 0 V(H;/D) (604d)

For simplicity, consider a one dimensional channel in cartesian
coordinates as sketched in figure 4. The solid boundary is at point
1 while there are three possible conditions at point 7; i) a solid
boundary, ii) an open port, and iii) an interior point where the
interface intersects the bottom. Since the depth, and hence the
ratio H,/D, are defined at every field variable location the
gradients [gi(ﬂl/D)] are defined at midpoints between U and ¢

locations (refer to points A, B, C, ... in Fig. 4). As an example,
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Fig. 4. Schematic of one dimensional charnel with stair-step depth
profile. Capital letters A through E indicate locations where the
gradients [%i(ﬂl/D)] are defined.
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[%(Hl/D)]A = (Hl/D)7 - (Hl/D)G' (61)

where numeral subscripts indicate the points where the ratios are
computed.

For the external mode computations, the continuity and momentum
equations are alternately applied at points 2 through 6, while the
internal mode computations start at point 4 in the same sequence.

The summation of the coupling terms for one complete operation, after

eliminating like terms, is
~eglugly 310wy 1,85 (H; /D) Ig}

vegly;lg ${[Ua17[85(H, /D) 1,)
(62)

~eglvgly 11U 150850 /D) 1g + (U5 ] [85(H /D) 15}
~eglvglg 311U 17085 (H, /D) 15},

The internal mode computations start at point 4 as discussed earlier.
Hence the first and third terms in (62) vanish. The residual terms
depend upon the condition at point 7. If point 7 is a solid
boundary, then [Ug]; = [U;]7 = 0 and the net energy transferred
between modes is zero. The second possibility that point 7 is an
open boundary requires that either the depths at point 6 and 7 are
set equal or the gradient, [%i(ﬂl/D)]A is set to zero. In fact the
two choices imply one another. It is more rational to set the
gradient Hl/D to zero since all these gradients are computed only for
the purpose of evaluating the coupling terms. If the interface

intersects the bottom at point 7, then the external mode computations
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are continued until a solid boundary or an open port is encountered,
while the internal mode computations stop at point 6. It immediately
follows that the last term in (62) vanishes. The coupling term

obtained by applying the external momentum equation at point 7 is
—eg[U.1; ${[v;16[&5(H,/D) 15}, (63)

which exactly balances the only remaining term in (62). Note that
the second part of the coupling term in (63) is omitted since it
involves y;, which is zero. It can be shown from (59a,b) that all
the coupling terms are zero beyond point 7. As a result, the net
transfer of energy between modes is zero.

In summary, with this form of coding, employing the average of
the products U[%ﬁ(Hl/D)] or w[%i(ﬂl/D)]' the only constraint needed
to fulfill the energy requirement is that the gradient of (Hl/D)
along the points just inside the open boundary be zero.

Therefore, the coupling terms, x;, and £;, in the implicit
computations of the external mode momentum and mass conservation

equations, (41) and (43), are coded as follows:

Xp = erg $UR(I-3,3)[(By/D(I,3))-(H;/D(I-§,3))]

+R (L, 3+%) [ (Hy/D(I+%,3))-(H,/D(1,3))1}. (64a)
i 5 1 5 1

gy = el (UD(1-%,3) [(H/D(1,3))-(H,/D(I-%,3))]
+UB(1+%,3) [(H;/D(I+%,3))-(H;/D(1,3)) ]}
+o V(T 3+5)0(3+3) [(By/D(I,3+5))~(H,/D(1,3)) ]

+VR(1,3-%)6(3-%) [ (Hy/D(I,3))-(H,/D(L,3-))1}} . (64b)

For the explicit calculations at odd time steps, Xjr in (46) becomes
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X; = eryg VI, 3+5)60(I+5) [(H)/D(1,T+5))=(Hy/D(1,3)) ]
2 (1-%,3)6(3-§) [ (H;/D(I1,3))~(H;/D(I,3-%))1}. (65)

Note that the values of all the field variables at previous time
steps are used in the expressions of the coupling terms. This
implies that the codes for these terms at even time steps are the
same as those at odd time steps except for the sequence in which they
are applied. Egs. (65), (64b), and (64a) are the codes employed for
implicit computations of V and ¢ and for explicit computations of U,
respectively.

Sequential coding of coupling terms for the implicit and

explicit internal mode computations at odd time steps, are

Xe = —gleHyHy/D(I,3) Ju g {yB(1-4,3) [ (H}/D(I,3))-(H;/D(1-%,3))]

+y2(1,3+§) [ (H/D(I+%,3))-(H;/D(I,3))1}, (66a)

e = 3{vy {UB(I-%,3) [(H,/D(I,3))-(Hy/D(I-%,0))]
+UR(1+%,3) [ (H/D(I+%,3))-(H,/D(1,3)) 1}
+0y {VE(T,3+3)6(3+5) [ (H/D(1,3+3))- (81 /D(1,3))]

+VB(1,3-3)6(I-%) [ (#/D(1,3))-(H;/D(1,3-5))1}}, and (66b)

Xe = ~gleH Hy/D(I,2) Jo 3 {Va(1,3+5)6(I+5) [(H1/D(T,3+3)))

-(Hy/D(1,3)) 1+yB(I-%,3)6(3-%) [(H}/D(I,3))-(H;/D(I1,3-$)) 1} . (67)

The same considerations for the coding at even time steps as
discussed above also apply.
It is noteworthy that the numerical coding of the coupling terms

employed is the only possible form, on the basis of energy transfer,
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for the spatial-staggered grid system used in this study.
Furthermore, the energy transfer is balanced globally, but not
locally. In other words, a balance is obtained when considering the

entire domain but not at any individual grid block.

e) Initial and boundary conditions

The model was taken initially at rest. The initial positions of
the storms were in the Cayman Sea for the hurricanes of record and
for all except one synthetic storm employed in the parametric study
which will be discussed in Chapter IV.

Specified volume transport or height anomalies are employed as
boundary conditions. Along the solid coastal boundaries the normal
component of volume transport is specified as zero. At the open grid
elements water levels are placed in equilibrium with the inverted
barometric pressure for the external mode and zero for the internal

mode.

3. Wind and pressure forcing

a) Analytical wind model

Practically, there are two methods of portraying hurricane wind
fields on the computing grid. One method is to digitize the surface
charts that are available. The data are sampled at stipulated time
intervals and grid points and then interpolated in space and time to
provide the necessary information to the model. This method requires
detailed surface charts of wind throughout the simulation period. In

addition, this is a laborious technique to apply, especially for this
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study which requires these data over long time periods. The
alternative, which is used in this study, is to derive the required
forcing fields from a parametric analytical model.

Schwerdt et al. (1979) developed a model for surface wind fields
associated with hurricanes for the Gulf and East Coasts of the United
States which is commonly known as National Weather Service Model,
NWS-23. This model was employed to reconstruct radial wind profiles
for hurricane Carla. Comparisons between the model results and the
observed profiles revealed that this model does not satisfactorily
depict the observed Carla winds in the far field. It is remarked
that effect of the storm forward speed is ignored

In NWS-23 there are two variables, the maximum wind, Vins and the
radius to maximum wind, R, that determine the wind speed for a
stationary storm. Therefore, in order to obtain good comparison of
the winds in the far field, either Vp or R, or both have to be
changed and this inevitably deteriorates the winds near the center of
the storm.

Holland (1980) proposed a new model that has two parameters, C
and k that independently define the location of the maximum winds and
the shape of the wind profile, respectively. The model thus allows
the adjustment of wind speed in the far field through‘the parameter

k, without changing R. The gradient wind profile is given as
3
Wy = [Ck(P, - Poexp(-C/t™)/p rF + (3r£)2]% - gre, (68)

where Wg is the gradient wind at a distant r from the center, £ is

the Coriolis parameter, Pa is the the air density (assumed constant),
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P, is the central pressure, and P, is the ambient pressure.
Holland determined C and k by fitting the pressure profile

P =P, + (B - Pexp(-c/r¥). (69)

However, he pointed out that this approach would underestimate the
peak winds and that wind observations, if available, should be used
directly.

For hurricane Carla, there were detailed surface charts
available. Equation (68) was modified for the direct approach as
follows: First, C was eliminated by considering that the

cyclostrophic wind
k k %
Wo = [Ck(P, - PLlexp(-C/r™)/p r™]4, (70)

was a more appropriate representation of the maximum wind. Upon
taking dWc/dr and setting it equal to zero at r=R, we obtain the

relation
R=clkorc=RE. (71)

Since detailed surface charts allow a good estimate of the maximum
wind and radius of maximum wind, the pressure drop (Pn—Pc) was

represented in terms of the maximum wind by substituting (71) in (70)

to obtain
1
Wy = [(k/pge) (B - BT, (72)
Using (71) and (72), (68) reduces to
1
Wy = [®/D)¥uZexp1-(R/D)¥) +(3r)2)12 - Jre. (73)
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It should be remarked that for k=1, this wind model is
equivalent to the NWS-23 model. Another important point to note is
that the azimuthal variation of k automatically results in an
asymmetry of the wind field due to the translation of the storm.

From the NWS-23 model, this asymmetry has to be taken into account by
augmenting the maximum wind speed with the forward speed of the storm
and the cosine of the angle that depends upon the location of the

maximum wind relative to the storm path.
b) Analytical pressure model

The pressure profiles obtained from (69) using k obtained from
fitting the velocity profiles were not in good agreement with the
cbserved pressure profiles. This confirms Holland's remark as

mentioned earlier. Therefore, the pressure profile
P =P, + (PP el R/T), (74)

which is equivalent to (69) with k=1, was employed in this study.
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CHAPTER III

SIMULATIONS OF HURRICANES OF RECORD

1. Selected hurricanes of record

Eligible hurricanes of record for the purposes of this study
were considered as those storms for which the historical information
required by the numerical model was available. This includes the
time series of the central pressure, radius of maximum wind and
surface charts of wind and pressure. These charts should cover the
entire Gulf of Mexico and Cayman Sea from the time at which the storm
center was outside the Gulf to sometime after landfall. Additional
important data required includes the water level associated with
these storms at stations around the Gulf, in both the United States
and Mexico.

Of the 26 hurricanes spanning the period 1950-1980 which were
examined as potential hurricanes of record, only hurricanes Carla in
1961 and Allen in 1980 had sufficient observations of the forcing
fields and the response histories. These are the hurricanes of
record used for verification purposes in this study.

Hurricane Carla was an exceptionally slow moving storm with an
average forward speed of 13 km/h. Figure 5 shows the path indicated
by serial positions of the storm's center at six hour intervals.
Carla reached hurricane stage at 1200 GMT 6 September 1961 and the
center entered the Gulf through Yucatan Strait at approximately 1500
GMT 7 September with a central pressure of 970 mb. As it moved to

the northwest, it continously deepened and reached a minimum central
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pressure of 935 mb at 1200 GMT 11 September. The time sequence of
the central pressure from September 4 to September 13, Fig. 6, was
presented by Dunn et al. (1962). During the period 1200 GMT 9
September through 1800 GMT 12 September, the average radius of
maximum wind was approximately 40 km with a slight increase observed.
Upon entering the Gulf, Carla had winds of 60 km/h. As it drifted
northwest, then west northwest it increased in size with cyclonic
winds observed over the entire Gulf. Maximum wind speeds of 82 km/h
were observed inland as Carla approached the coast. Carla made
landfall near Pass Cavallo at 2100 GMT 1l September and by 12
September it was positioned north of Waco. Hurricane Carla has the
distinction of being the best documented storm in history.

Hurricane Allen was a fast moving storm compared to Carla. 1Its
average forward speed in the Cayman Sea was 35 km/h. Its forward
speed decelerated to about 30 km/h as it moved west-northwest across
the Gulf. The center of the storm entered Yucatan Strait at
approximately 1800 GMT 7 August, 1980. The hurricane center crossed
the coastline near Brownsville at 0700 GMT 10 August. Figure 7 shows
the path of Allen from the Cayman Sea until landfall.

The time sequence of Allen's central pressure, as shown in Fig.
8, was obtained from Lawrence and Pelissier (1981). There were three
cycles of a 50 mb fluctuation in the six-day period from 4-10 August.
The first minimum central pressure of 911 mb occurred early on 5
August when the storm was approximately 370 km south of Puerto Rico.
The next minimum of 899 mb was measured at 1742 GMT 7 August when the

eye just passed through the strait. Allen deepened for the third
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time when it moved toward Texas coast and reached a %09 mb low early

on 9 August local time.

2. Meteorclogical data

The Hydrometeorological Section of the U.S. Weather Bureau
provided surface charts of hurricane Carla winds and pressure for the
entire Gulf of Mexico. These charts were available at 6 h intervals
from 1200 GMT 9 September to 1200 GMT 10 September and at 3 h
intervals thereafter. Prior to this period, the surface pressure
charts that covered North America, obtained from the National
Climatic Center, provided observed surface winds from land stations,
a bouy and ships of opportunity.

Ho and Miller (1980) presented several surface wind charts for
the period when Allen was in the western Gulf. The coverage of these
charts is limited to the western Gulf only. Despite the lack of
surface wind charts however, the time sequence of the central
pressure and the available surface pressure charts provided enough
information to construct surface wind fields. However, this
information was not sufficient to provide the same degree of detail

as obtained with hurricane Carla.

a) Surface wind for hurricane Carla

The hurricane Carla surface wind charts were analyzed to
determine the location of the eye and R, Wj and k which were required

for the computation of wind fields.
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The position of the eye and the radius of maximum wind were
first determined. To account for the asymmetry of the wind fields, k
was determined by fitting the observed radial wind profiles along
different sectants around the eye. A total of 8 profiles was fitted
for each chart. Figure 9 shows sections where these profiles were
fitted. 1In each case, the profile was plotted by digitizing the
radial distance from the center to the isovels on the observed chart.
The maximum wind speed, Wy, was determined from the plot at the
distance R from the center. The radial wind profile was computed
from (73) by substituting R, W, and assuming k=1l. The resulting
profile was compared to the observed and k was adjusted to obtain the
best possible agreement.

Prior to 1200 GMT 9 September, during which there were no
regional Carla surface wind charts, the analysis to obtain R, W, and
k depended upon the surface pressure charts from the National

Climatic Center. Eg. 68 was rewritten, by using (71), as
k /DK L 1213
W = [(R/r)F(k/py) (Py-P.)e + (3r£)21% - Jrf. (15)

The time sequence of the radius of maximum wind was extrapolated back
in time using its relation to the central pressure which is
summarized in NWS-23. The radial distances to those points where
observed winds were reported, were digitized from the surface chart.
The far field pressure was determined from the first cyclonically
curved isobar. Assuming py = 1.15 Kg/m3 and k=1, the wind speed
computed from (75) was compared to the observed value and again k was

adjusted to obtain minimum error. Once k was determined, W, was

b



Schematic showing azimuthal distribution of radial sections

where wind profiles were fitted.

9.

Fig.

45



computed from (72).

Attempts were made to obtain a simple expression for both k and
W, as a function of the azimuthal angle (measured from the north)
such that these two parameters could be internally computed.

However, no simple relationship could be established due to the
complexities of the patterns of azimuthal variation of k and Wy
which, in addition, varied irregularly for each map time. Therefore,
these parameters have to be specified serially. Furthermore, linear
interpolation in time to obtain these parameters for intermediate
time step computations constrained the values to the same set of
azimuths (relative to heading) throughout the simulation period. As
a result, an a priori linear interpolation in space was employed to
get k and W, as continuous functions of azimuth. A standard set of
azimuths was then selected.

Finally, the surface wind fields for each map time were
constructed using the interpolational routine employed in the model.
Comparison between the computed and observed wind fields was made and
final adjustments of k, if necessary, were decided. Figures 10 and
11 are examples of the computed wind fields at 0000 GMT 7 September
and 1200 GMT 9 September, respectively. The solid circles indicate

the observed wind speed from the surface charts.

b) Surface wind for hurricane Allen

The inadequate coverage in both space and time of surface wind
charts for hurricane Allen aborted attempts to fully analyze these

charts as practiced in hurricane Carla. Therefore, NWS-23 was used

46



*31IeUyD 83e3INS 8yl woij peads pulM PIAISSO BY} 8IELDIPUT SBTIITD PITOS IYL
S,PUBTIOH WOJI3] pPauTelqo Se ‘1961 J2queideS £ IWD 0000 3e (S/W) PUTM 3DBIINS BIIR) SURDTIINY

20 TR BNV SEELEND SR SN SN BN MAr S

=T

ﬁ/

0.0

i

(G
oy

|

.-----~<u.---.-.--.--—ﬁ*-«----q-.-.-.------4-4—.-.-.
!

LON S SELA BB M BN B S B

™ 1 1

[ SIS SN S S E EES BT S R T WY B N T N N S SR SN T N

Vil G B |

g[Ie) aUBOLIINY

Lladada b oS o b s b o0 o 0 32 o023 b ot gl tat el ot alatatatadatadabalatatilaly

* Tepou

‘0t

*b1g

47



*3JIeyd adezans 8yl oyl worj paads purtm paAIasqo 8yl IJBDTPUT SIBTDITD PTITOS BYL
S,PUBTTOH WOl1J pauTelqo se ‘1967 JoquwaideS 6 IWD 00ZT 3€ (S/W) PUTM 8DBJINS BTIR) SUBDTIINY

AL S B DL L LA RELOE SLOE SELEN JLAN S0 B BLON NNLOT B A JHLED SN INLIN SN0 UL S O LA AL RN NN SRS TLEN TELEN SLUD SAE AN SULAS NEA |

°,

LN SR SRR LS B S BN LS

LR B

LR L |

[N R SN NS ST S BV AT BN B S T P P A SR AR BT R BN I AU Y

LR R R

1 ellv) SUBOLLINY
st b la st a s tat st ot e it ad et st et d edatalatstitalatataletetatrtailisl

* I8pou
‘TT *b14

48



to determine R and W, from P, which were required to construct the
wind fields. The graphical relationship between the radius of
maximum wind and the central pressure was analyzed using simple
linear regression to establish a functional relationship. The radius
of maximum wind was then determined. The maximum wind speed for a

stationary storm Wnse is given as
% %
Wng = 0.9(1/pe) (Pn—Pc) - (R£/2) (76)

Since there were no surface charts to analyze for the parameter k, a
constant value of 1 was assumed. As discussed earlier, the asymmetry
of the wind field was achieved by augmenting the maximum wind speed

by

Wy = Wy *+ 1.5(V60:63)(19-37)cos0, (77)

m ms

where ¢ was the angle between track direction and the surface wind
vector and To = 0.514791 for wind speed in m/s. The track of
hurricane Allen was approximately 285° (cf. Fig. 7, p. 41) relative
to true north. Assuming that the maximum wind occurred at right
angles to the right of the track, then ¢ was zero at 25° relative to
true north. Eg. (78) was used to compute the maximum wind speed for
each grid point (I,J) and thus the surface wind speed at all

computational points can then be evaluated.
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3. Tide gauge data

A total of 9 and 13 tide gauge stations for hurricane Carla and
Allen, respectively, were chosen to provide the observed response in
the Gulf of Mexico. Figqure 12 shows locations of these tide gauge
stations. The Tides Prediction Branch of the National Oceanic and
Atmospheric Administration (NOAA) and the National Autonomous
University of Mexico (UNAM) provided hourly water level for a period
of several weeks before and after the hurricanes. Filtered versions
(using a 40 h lowpass filter) are shown in Figs. 13-15 for some
selected series obtained during hurricane Carla. These filtered
plots essentially remove the tides. The arrows in the figures
indicate the time at which the center of Carla entered the Gulf
through Yucatan Strait. There were indications of a gradual rise of
water level well before the peak surge, a possibility of forerunner
surges at all 9 stations. Note also the degree of background
variation unrelated to the hurricane several weeks prior to the
hurricane.

The same analysis as applied to recorded water level for
hurricane Carla were used for the records obtained obtained during
hurricane Allen. Figures 16-18 show the filtered data at some
selected stations. The presence of an initial rise in water level is
again observed at all stations.

The lowpass filtering illustrated above is known to smooth out
and broaden the peak surge. To properly remove tidal signals from
recorded data by the harmonic method requires a suitable number of

constituents to insure proper phasing. Unfortunately, only the Key
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West and Galveston stations have enough information for the actual

computation of the tide. Therefore, at each station, only the mean
water level during the period considered, excluding the peak surge,
was removed from the raw data. Thus the recorded hydrographs which
are compared to those computed contain the tidal signal, but its

amplitude is small and does not unduly complicate the comparison.
4. Simulation procedure

The initial model wind and pressure fields were increased in
amplitude linearly from zero to their actual initial values over a 48
hour prototype time period. During this period Carla was kept
stationary at 19.04°N and 85.15°W which was its position at 1200 GMT
6 September. The simulation was carried out to 0000 GMT 13
September, approximately 28 h after landfall.

The simulation for hurricane Allen starts at 0000 GMT 7 August
and ends at 0000 GMT 12 August. The initial position of the eye of
hurricane Allen during start up was at 20.10°N and 81.90°W.

At each time step the east and north component of wind stress
and the atmospheric pressure (the inverted barometric height) were
computed at each grid point. The sequence of wind and pressure
computations consisted of two linear interpolations. First, the
position of the eye and the other parameters at each time step were
linearly interpolated from two appropriate sets of values (6 h
apart). The radial distance from the eye to each individual grid
point (I,J) was computed. The inverted barometric height was then

computed from (74). The angle between the line joining the eye to
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the grid point (I,J) and true north, 5, was determined. The pair of
azimuthal angles that embraced ¢ was sorted. The values of k and Wi
associated with the two angles so determined were used in the linear
interpolation to obtain their values at grid point (I,J).

A constant inflow angle of 20° was assumed in all simulations
except Carla for the decomposition of the wind speed before éomputing
the wind stress components. The computed water level at Galveston
during the early stage of Carla simulation using constant inflow
angle was lower than the observed. Careful examination of the
surface wind charts at 1200 GMT 9 September revealed that there was a
region along the Texas shelf where the cross shelf wind reversed
direction indicating a negative inflow angle. A&n example of an
analyzed wind map given by Miyasaki (1963), also shows negative
inflow angles along the Texas shelf. Therefore, the inflow angle was
allowed to vary as a function of the radial distance using the

empirically determined formula

21 for r < Ry,

0= (78)
©,-(r-R{)*0.5*A/r for r > Ry,

where A is a maximum inflow angle, 200, Ry is the radial distance at

which the inflow angle was zero, and

e, = [(Ry/r)A%exp(1-(Ry/r))+(§r£)?] - 3rf,

0, = [(Ry/r)X A2exp(1-(Ry/0)¥)+(Fre)2] - §rf,
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K = r/50 .

Figure 19 shows the adopted inflow angle profile. This radially
vafying inflow angle was applied only from the begining of the
simulation to 0000 GMT 10 September. A constant inflow angle was
resumed after this period since there was no other evidence of
negative inflow angles on the remaining available surface charts.
Results of the simulation were sampled every 24 hour prototype
time. These included digital fields and map plots of the height
anomalies and currents for both modes, and surface currents whose
values were retrieved from the modal currents. At the end of the
simulation, the computed and observed hydrographs at the tide
stations were plotted. Contours of the peak surge on the continental
shelf for the entire Gulf of Mexico and for the Texas-Louisiana shelf

were also plotted.
5. Results of Carla simulation

Figures 20 through 28 show the computed (solid) and recorded
(dashed) hydrographs at the stations used in this study. The overall
comparisons are fair, especially during the first half of the
simulation period. There is not much activity in the southwestern
portion of the Gulf (Campeche Bay) as revealed from the hydrographs
from the three Mexican stations (Figs. 26 through 28). The simulated
hydrograph at Key West has a slow oscillation with a period of
approximately 7 days. The mean of this long period oscillation lies
close to the mean of the recorded water level. This signal is also

observable in the St. Petersburg computed hydrograph. However, the
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computed water level at St. Petersburg is higher than the recorded
throughout the period. This might be due to the fact that this tide
gauge station is located inland and not on the open coast. The
departure of the two hydrographs at Grand Isle is probably the result
of resuming the 20° inflow angle which shifted the wind direction
from the alongshore or slightly onshore to slightly offshore. The
comparison for Galveston is better than that obtained by Miyasaki
(1963), presumably because of the special care to match the observed
wind fields for the northwest Gulf Coast. At Port Isabel, the
discrepancy, which resembles that at Grand Isle but with a larger
deviation, is possibly due to the difference in locations of the tide
gauge station and the point where the computed water level was
sampled. The actual site of the tide gauge station is inside a semi-
enclosed embayment, as shown in Fig. 29. As a result, the effect of
the offshore component of the wind, which prevailed at this station
from approximately 0000 GMT 10 September onward, is limited while the
southerly component produces a set up within the constricted lagoon
at the gauge site. On the contrary, the computed hydrograph, sampled
at half the grid size away from the digitized coastline, is subjected
fully to the wind draw-down. Miyasaki (1963) obtained a similar
result at this station.

Despite these discrepancies, the primary interest is the
comparison at Galveston where the largest surge, among all sampled
stations, occurs. It should be pointed out that the maximum computed
water level is not at Galveston but at the grid point (8,42), located

one grid block northeast of the path ¢of Carla at the coast close to
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Port Isabel_
Tide Gauge
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4

Fig. 29. Location of Port Isabel tide gauge station which is
sheltered by south Padre Island.
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the location of Matagorda Bay where the highest high water marks were
observed for this hurricane. The agreement is good over the entire
simulation period at Galveston. The effect of the reversing inflow
angle in the simulation is clearly pronounced as the computed water
level suddenly drops at approimately 2200 GMT 9 September. This
result is somewhat out of phase with that indicated by the
observations.

Figures 30-32 show instantaneous fields of the barotropic and
baroclinic height anomalies and surface currents at 1200 GMT 10
September. Contours of the barotropic height (Fig. 30) clearly
demonstrate the inverted barometric effect around the storm center.
Upwelling along the hurricane path, a feature first investigated by
Leipper (1967) in the wake of hurricane Hilda in the Gulf of Mexico
in 1964, is noticeable in the baroclinic height field shown in Fig.
31. It should be remembered that the negative contours of the
baroclinic height anomalies correspond to upwelling of the interface.
Geisler (1970), in his linear analytic model, found that the
baroclinic response to a moving hurricane consisted of both upwelling
and inertio-gravity waves in the lee of the storm. Figures 31,32
strikingly portray this wake oscillation. Chang and Anthes (1978)
carried out numerical experiments to investigate the character of
this wake produced by various types of atmospheric forcing. They
found that the wavelength is longer for a faster moving storm and,
for the same forward speed of the storm, is shorter at higher
lattitude. In addition, within the limit of 50 h and 1200 km time

and space scales employed, the f-effect (variation of £) did not
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alter the results. For an asymmetric storm moving at 18 km/h, which
is comparable to the translation speed of Carla, in an idealized f-

plane basin, the wake oscillation has a wave length of approximately
420 km. The average wave length obtained from this Carla simulation

is approimately 360 km.

6. Results of Allen simulation

The results of the Allen simulation show a synchronous
oscillatory signal with a period of approximately 28 h in all of the
simulated hydrographs. The amplitude of this oscillation is
approximately 20 cm. The existence of this in phase signal in all
stations around the Gulf is indicative of a Gulf-wide, Helmholtz mode
superimposed on other forced modes. Consequently, an ad-hoc code to
compute the average water level in the Gulf proper (designated as ng)
at each time step was added. Figure 33 shows the time series of G-
The solid line represents ng computed by averaging water levels at
each grid point in the Gulf, and the dashed line is ng computed from
the continuity equation using the difference of volume transports at
the Florida and Yucatan ports. The two curves are practically
coincident and very well matched with the signal present in the
individually computed hydrographs mentioned above. As it can be seen
in Fig. 33, this mode persisted throughout the entire simulation
period.

The agreement between the simulated and observed hydrographs
(Figs. 34-46) is comparable to that obtained in the Carla simulation.

This is surprising since less information regarding the atmospheric
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forcing is available for hurricane Allen than for hurricane Carla.

Hydrographs from the Mexican stations (Figs. 44-46, p. 89 - 91)
reveal almost no response except for ng for the entire period
considered. The computed water level at Progreso shows a response to
the barometric pressure drop during the passage of the center of
Allen between 1800 GMT 7 August to 0006 GMT 8 August. However, the
observed hydrographs have no indication of this perturbation. This
circumstance also occurs in the simulation of hurricane Carla (cf.
Fig. 28, p. 70). It is not yet appreciated why the Mexican coast is
passive to these two hurricanes.

The slow oscillation found at Key West and St. Petersburg in the
Carla simulation is also present. It is noticeable again at all
stations from Key West to Appalachicola.

The maximum computed water level occurs at grid point (4,33)
which is the location of the sample point for the Port Isabel
hydrograph. This simulated peak surge is of the order of one meter
higher than the recorded peak. This is to be expected considering
the difference in locations of the simulated and actual hydrographs
(cf. Fig. 29, p. 72). In addition to reduction of the magnitude of
wind speed at the actual tide station by South Padre Island, the
volume responses inside the Laguna Madre will be small because of the
constricted opening. These factors contribute to a higher computed
water level at this station. A slower retreat in the observed
hydrograph is due possibly to the trapping of water inside the

embayment.
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The contours of modal height anomalies and surface currents at
1200 GMT 9 August are shown in Figs. 47-49. The inertio-~gravity
waves in the baroclinic height anomaly (Fig. 48) seem to be
undetectable. Examination of this field at later times indicates
that only one-half wavelength of the wake oscillation is seen in Fig.
48. This agrees with the experimental results of Chang and Anthes
(1978) showing that the faster the storm moves the longer the
wavelength of the oscillation. The approximate half wavelength of
350 km is measured in this hurricane Allen simulation.

The existence of ng in the simulated hydrographs for Allen
prompted a repeat simulation of hurricane Carla with the added code
to determine ng. Figure 50 shows the resulting time sequence of nG
for Carla. The amplitude is smaller than the one associated with
hurricane Allen and the averaged period is about 24 h. The G signal
obtained from the Carla simulation once again shows up simultaneouly
in the individual hydrographs at stations around the Gulf.

It is important to note that there is a correlation between the
ng signal and the transport through both Florida and Yucatan Straits.
Figures 51 and 52 show the time series of the volume transport
through Florida Strait (FS), Yucatan Strait (¥S), and the total
differential volume transport (unlabelled) as obtained from the
hurricane Carla and Allen simulations. The striking feature of the
differential transport is the periodicity. The average periods of 24
h and 28 h estimated from Figs. 51 and 52 are exactly the same as the
period of their corresponding NG signals. In both cases,the nG

signal lags the net transport by 90° in phase. The first maximum of
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Computed baroclinic height anomaly field (meters) for hurricane Allen at 1200 GMT 9 August

Fig.
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the net periodic transport produced by hurricane Carla is
approximately 5 x 106 m3/s as compared to 12.5 x 106 m3/s.generated
by hurricane Allen. The ng signal reaches the first maximum of about
0.1 m for hurricane Carla and 0.35 m for hurricane Allen which are in
conformity with their respective net periodic transports. These
results are indicative of the generation of ng by the net

differential port forcing (volume transport).
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CHAPTER IV
PARAMETRIC STUDY

The purposes of the parametric study were to obtain responses in
the Gulf of Mexico to different forcing from hypothetical storms and
to investigate those cases where the forerunner surges might be

generated.
1. Selection of paths

A total of 5 paths, designated as PATH1 to PATH5, for which the
model storms would traverse the Gulf was selected. The first four
paths originated in the Cayman Sea and entered the Gulf through
Yucatan Strait. Sequentially, the locations where these four paths
crossed land were in the vicinity of Corpus Christi (PATHl), Sabine
Pass (PATH2), Burrwood (PATH3) and Apalachicola (PATH4). The last
path (PATHS5) started at 25°N and 81.5°W (overland in Florida) and
made landfall at Corpus Christi. All of these paths were great
circles as shown in Fig. 53, The first and second track (PATH1 and
PATH2) were similar to those of hurricanes Carla and Allen. The
third path (PATH3) was similar to hurricane Camille's (1969) track
while the fourth path resembled the track of hurricane Agnes (1972).
The last track (PATHS5) which is rarely observed in nature, was

selected as a special case.
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2. Hypothetical storms

The hypothetical storms were assumed to be characterized by the
NWS23 parametric model with time invariant radius of maximum wind,
translational speed and central pressure deficit. Three constant
forward speeds of 15, 25 and 35 km/h were adopted. The slowest one
was comparable to the average forward speed of hurricane Carla while
the fastest speed was approximately the translation speed of
hurricane Allen when it was in the Cayman Sea.

Two radii of maximum wind, 30 and 60 km, were selected to
account for the scale variation of the atmospheric forcing. The
radii were kept constant for the entire simulation period. The range
of radius of maximum wind for Gulf Coast hurricanes of record as
summarized in Schwerdt et al. (1979) was approximately 10 to 60 km.
This range of radii applies to those storms making landfall between
Port Isabel and Apalachicola, which covered the landfall locations of
the five selected paths. The large radius is at the upper limit and
the other is about the average of the observed range. The
approximate dimensions of a grid block are 25 km x 27 km and,
therefore, sets a lower limit on the radius of maximum wind which can
be used. Storms with a radius of maximum wind smaller than the, grid
size would not be resolved and the associated wind field would be
highly distorted.

The last characteristic considered was the pressure drop (AP
=Pn—Pc). It is known, however, that there is a nearly linear
relationship between the peak surge and the pressure deficit, other

parameters being held fixed (Jelesnianski, 1972). Therefore, a
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constant value of 80 mb pressure drop was assumed in most of these
parametric simulations. Nevertheless, one of the sensitivity tests,
which will be discussed later, was designed to verify this
relationship.

Table 1 summarizes the possible combinations of these parameters
for the five selected paths including their designated hurricane
names for further discussions. Runs were made for a representative
subset of these model hurricanes (those identified by an * in the
last column). This subset allows one to examine responses for
different paths for average hurricane parameters, as well as to

determine effects of forward speed and effects of scale.
3. Simulation procedure

The start up process for all parametric simulations is the same
as in the simulations of hurricanes of record. The model
calculations start at 0000 h on day 1 but end at different times
depending on the path and forward speed. However, in all cases the
computations proceeded to at least 24 h after landfall.

Wind and pressure forcings are again computed at each time step.
Parameterizing the pressure drop instead of maximum wind speed
(including assuming k=1) simplifies the wind stress computations by
eliminating linear interpolations in space (azimuth) and time to
obtain k and Wp. Equation (75) is used to compute the wind speed
which is then augmented by the forward speed to account for\the
asymmetry in the wind fields. The only information required to

compute the forcing is the position of the storm center which is
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Table 1. Characteristics and designated hurricane names for the
adopted hypothetical storms for parametric study

Radius of Forward
Path maximum speed Name
wind (km) (km/h)
35 HUR2 *
30 25 HURL *
15 HUR3 *
1
35 HURS *
60 25 HUR4 *
15 HURE *
35 HURS
30 25 HUR7 *
15 HURS
2
35 HUR11
60 25 HUR1O
15 HURL2
35 HUR14
30 25 HUR13*
15 HURLS
3
35 HUR17
60 25 HURl6
15 HUR18
35 HUR20
30 25 HUR19*
15 HUR21
4
35 HUR23*
60 25 HUR22*
15 HURZ24>*
-35 HUR26
30 25 HUR25*
15 HUR27
5
35 HUR29
60 25 HUR28
15 HUR30
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given at 6 h intervals. The code added to compute ng is retained.

4. Results of parametric simulations

The simulated responses of the Gulf to the synthetic storms
listed in Table 1 are presented in this section. Discussions of the
results are separated into three parts. First, general results
common to all simulations are briefly discussed. The simulated
hydrographs obtained from each simulation and other results
pertaining to the development of forerunners are highlighted in the
second part of the discussion. The last part contains results from

related simulations.

a) General results

The inertio - gravity waves in the baroclinic height anomaly
fields are found in all parametric runs. Figures 54 through 57 show
contours of baroclinic height anomalies and the surface current
fields obtained from the HUR2 and HUR3 simulations. Increasing the
forward speed of the storm resulted in increasing the wavelength and
decreasing the width of the wake as seen in Figs. 54 and 56. This is
in agreement with the results of Chang and Anthes (1978) and Geisler
(1970) regarding the wavelength and the width, respectively, of the
storm generated wake.

A dominant long period oscillation is found in the hydrographs
from all stations on the Florida shelf. Estimated periods of this
oscillation are on the order of 4 -~ 6 days. Marmorino (1982)

analyzed sea level records from Key West to Pensacola recorded during
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height anomaly (meters) field at 0000 h on day 5 generated by model
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Computed baroclij

54,
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ic height anomaly field (meters) at 0000 h on day 7 generated by model

Computed baroclin
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January - April 1978. Dominant signals were found in the 6 day band
and 3 day band. However, the Gulf-wide signal, ngr <an also be
observed in the simulated hydrographs from stations on the northern
part of the shelf. Figures 58 and 59 show hydrographs from
Apalachiceola and Cedar Key obtained from the HURL simulation. It is
obvious from these two figures that other modes of response exist on

the Florida shelf.

b) Simulated hydrographs

The following discussions are ordered according to the selected
paths starting from PATH1 through PATHS5. Within each path, results
obtained from the storms of small radius are presented first followed
by that of the large radius storms.

The time sequence of the computed water levels at Galveston
obtained from the simulation of HURLl is shown in Fig. 60. The
initial rise of water level which reaches a maximum of 0.22 m at
approximately 1300 h on day 4 is well-defined. Resurgence after the
peak surge with an oscillation period of about 6 h is also
noticeable.

The initial peak of water level in the Galveston hydrograph is
in phase with the first maximum of the ng signal as shown in Fig. 61.
The first extreme of nGr which is also the maximum peak, occurs
approximately 24 h after the storm entered Yucatan Strait. The
average period of this signal is 30 h. This mode is not only present
in the hydrographs from all stations but also accounts for almost all

of the response in the southwest sector of the Gulf as shown in Figs.
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62 and 63. The dashed lines represent ng and the solid lines are the
simulated water levels from the indicated station.

The maximum surges generated by HUR2 and HUR3 imply a direct
relationship between peak surge at the open coast and forward speed
of the storm. Jelesnianski (1972) proposed a correction factor for
the effect of storm vector motion (track direction and forward speed
at landfall) which is larger for a faster moving storm provided that
the landfall angles are the same.

Figures 64 and 65 show the simulated hydrographs at Galveston
from the HUR2 and HUR3 simulations, respectively. The initial rise
of water level before the peak surges are present in both runs which
are concurrent with the first maximum of their corresponding ng
signals. The maximum peaks and periods of 7 as determined from
Figs. 66 and 67 are 0.22 m, 28 h and 0.21 m 30 h, respectively. The
time lag, SG, is approximately 17 h for the faster storm (HUR2) and
about 24 h for the slower storm (HUR3).

The maximum surges produced by storms of large Rpax
(HUR4,HURS,HUR6) are on the order of 2 m larger than those
corresponding to the small storm (HURL,HURZ,HUR3) simulations.
Except for a larger percentage of increase in the peak surge at the
open coast, the results are in gqualitative agreement with
Jelesnianski (1972) in which a very simple bathymetry was employed.

The hydrograph at Galveston from the HUR4 simulation is shown in
Fig. 68. The time of the peak surge and the time at which the
initial rise of water level reaches the maximum are exactly the same

as in the HUR1l simulation. The resurgence oscillation is concealed
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by a high peak surge but still observable. Figure 69 shows the time
sequence of the Gulf-wide oscillation, ngr generated by HUR4. The
average period and 6G are 30 h and 24 h, respectively. The maximum
peak is 0.42 m, about a factor of 2 larger than in the HUR1
simulation. It is interesting to note that the largest difference in
the extremes of ng from HURL and HUR4 occur at their first maximum.
During later stages the differences reduce to a few centimeters. The
presence of nG in the simulated hydrographs from the other stations
is preserved. However, this oscillation is no longer coincident with
the water levels at the individual stations as in the previous cases.
Figures 70 and 71 clearly demonstrate the departure between the two
curves at Port Isabel and Progreso.

A peak surge of 6.5 m at the coast is generated by a fast moving
storm of large Ry, (HUR5). The slow moving storm of the same size
(HUR6) however, produces a smaller 4.71 m peak surge. Increasing the
maximum surge at the coast with increasing forward speed is the same
as that obtained from simulations of small storms as discussed above.
Figures 72 and 73 display the computed hydrographs at Galveston
obtained from the HURS5 and HUR6 simulations, respectively. Both
hydrographs have an initial rise of water level prior to the peak
surge that again matches the first peak of their corresponding G
series. The time sequence of the ng signal for HURS and BUR6 are
shown in Figs. 74 and 75. The maximum peaks of ng (0.4 m for HURS
and 0.38 m for HUR6) vary slightly with the forward speed but both
are approximately twice as large compared with those produced by the

small storms with the same forward speed, i.e., HUR2 and HUR3,
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respectively. Comparisons of the nG hydrographs between HURS and
HUR2 and also between HUR6 and HUR3, reveal that the largest
differences occur in the early stages of the simulations. This is
the same result obtained from similar comparisons between the HUR1
and HUR4 Gulf-wide modes.

Important results from the PATH1 simulations are summarized as
follows. The initial rise of water level before the peak surge at
Galveston exists in all cases. This rise matches the first peak of
the Gulf-wide oscillation, ngGe which occurs simultaneously around the
Gulf. Periods of ng vary between 28 h to 30 h. The effects of storm
size (Ry,y) are to increase both the peak surge at the coast and the
magnitude of nG. On the contrary, the effect of the storm forward
speed is to increase only the peak surge at the coast (for the same
size storms). Accordingly, for the remaining storm tracks (PATHZ
through PATHS) only one simulation for each path using a storm of 30
km Ry, and 25 km/h forward speed was made.

A peak surge of 4.4 m at grid point (23,46) near SW Pass,
Louisiana, is obtained from the PATH2 (HUR7) simulation. The nearest
station to this point is Grand Isle which is situated to the east.
The time history of the computed water levels at this station is
shown in Fig. 76. The highest computed water level at Grand Isle
occurs a few hours earlier than the true peak surge (at grid point
23,46) while the first maximum in this hydrograph coincides with the
first extreme of 7. The sequential occurrence of the two peaks
resemble the situation at Galveston in the PATH1 simulations. The G

hydrograph shown in Fig. 77 indicates the first maximum of 0.2 m with
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8, of approximately 19 h. The estimated period is 28 h., This Gulf-
wide oscillation resumes its dominant role in the computed
hydrographs on the left side of the track from Port Isabel to
Progreso.

The model storm HUR13 which traversed PATH3 produced a peak
surge of 5.81 m near Burrwood (grid point 37,48). The hydrograph
from Pensacola shown in Fig. 78 indicates a maximum water level of
less than one meter. The difference of almost 5 m in maximum surge
between Pensacola and Burrwood is probably due to the very narrow
shelf width at Pensacola. The initial rise of water levels that
match the first maximum of ng 1s noticeable. The period, maximum
peak and time lag, 5G' determined from Fig. 79 are 26 h, 0.2 m and 11
h, respectively. The ng Signal remains detectable in the hydrographs
from stations around the Gulf and again is the major part of the
response at stations on the west and southwest coast.

The storm moving due north along PATE4 at 25 km/h with a 30 km
radius of maximum wind (HUR19) generated a maximum surge of 6.22 m
one grid block to the east of the Apalachicola sampling point.
However, the simulated hydrographs show higher water levels at Cedar
Key than at Apalachicola. The sampling point for Apalachicola is
only half a grid block away from the path. Consequently, this
station lies inside the radial distance between the storm center and
the maximum wind location and is hence subjected to a smaller wind
stress. The time sequence of the computed water level at Cedar Key
is shown in Fig. 80. The initial rise of water level prior to the

peak surge is almost undetectable. The ng hydrograph, Fig. 81,
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indicates the first maximum of only a few centimeters. The estimated
period of ng and 5G are 27 h and 12 h, respectively. In spite of its
small amplitude, ng Still dominates the response in the hydrographs
from Pensacola counterclockwise to Progreso. The striking result
however, is the generation of a 12 h period oscillation after the
peak surge. This mode is also observed in the Apalachicola and St.
Petersburg hydrographs.

The very small initial rise of water levels along the Florida
shelf prior to the peak surge, together with the generation of the 12
h period oscillation motivated three additional storm runs for PATH4.
All have large Ruyax’ but take three different forward speeds.

The medium speed and large radius storm (HUR22) produced a 8.53
m maximum surge to the north of Cedar Key. The simulated hydrograph
at Cedar Key, Fig. 82, shows a peak surge of more than 5 m followed
by a strong 12 h period oscillation. The presence of the initial
rise of water level is hardly seen. Figure 83 reveals that a first
maximum of less than 0.1 m occurs at approximately 1800 h on day 4.
At this time the water level at Cedar Key is decreasing and reaches a
minimum at 1200 h on day 4. The stipulated path and a large radius
of maximum wind resulted in larger draw down of water level in the
early stages due to stronger offshore directed wind preceding the
storm as compared to the simulation of HUR1S. The hydrograph of G
shows a maximum peak of 0.24 m at 2300 h on day 4. An estimated
period of 29 h is determined from Fig. 83. Once again, the
hydrographs from stations on the left side of the track from

Pensacola to Progreso seem to depart from ng signal, the situation
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found in simulating large storms on PATHIL.

A maximum surge of 8.52 m occurring at the same location as in
the HUR22 run was generated by HUR23. The time sequence of water
levels at Cedar Key is shown in Fig. 84. Due to a fast speed and a
relatively short distance across the Gulf, the maximum surge at Cedar
Key occurs so early that it is not possible to identify the existence
of an initial rise of water levels. The 12 h mode however, remains
noticeable. The ng signal (Fig. 85) reaches the first peak of 0.2 m
at 1400 h on day 3, which is approximately 9 h after the storm passed
Yucatan Strait. The highest peak of Ng is 0.23 m and the period is
estimated at 25 h.

Reducing the forward speed of the storm to 15 km/h (HUR24),
decreases the maximum surge to 7.32 m. Figure 86 illustrates two
negligible water level maxima before the peak surge at Cedar Key.

The 12 h mode after the peak surge is again excited. The 26 h period
of the small amplitude g signal is shown in Fig. 87. It is
interesting but not yet understood why the first maximum of G
occurred before the storm center entered the Gulf. The 8y determined
from the second maximum of NG is approximately 20 h.

These four runs on PATH4 repeatedly gave the same results
regarding the effects of forward speed and radius of maximum wind.
The notable result is the excitation of the 12 h mode on the Florida
shelf. It is important to emphasize that this model admitted no
tidal forcing. Reid and Whitaker (1981) found a near resonant
response on the Florida shelf, with the greatest signal near Cedar

Key, to direct forcing by the M, tide potential. Figure 88 (Ichiye
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et al., 1973) shows the recorded water level with tidal signal
removed at Cedar Key during the passage of hurricane Agnes in 1972.
The 12 h period oscillation is obvious.

The maximum surges on the order of 7-8 m on the Florida shelf
found in the PATH4 simulations are probably too large. Reid and
Whitaker (1981) showed that the response on the Florida shelf to
direct forcing by the M, tide potential was very sensitive to the
local friction coefficient. Therefore, the simulation of HUR23 was
repeated with a friction coefficient of 7.5 x 10”4 m/s. This
coefficient is applied to the entire computing domain since only the
response on the Florida shelf is the primary concern in this
simulation. The maximum surge generated (6.23 m) is decreased by
about 25 % from that generated by the same storm simulation with the
smaller friction coefficient. The hydrographs from stations on the
Florida shelf (not shown) Clearly demonstrated the effect of larger
friction. Examination of the remaining hydrographs reveals no
significant changes in water levels due to increasing friction, even
on the Texas-Louisiana shelf region. Presumably these stations are
located too far to the left of the storm track such that the
corresponding currents and bottom stress are small.

The PATH5 storm, HUR25, produced a 5.4 m maximum surge near
Galveston, Fig. 89. The sharp drop of water levels before the peak
surge is caused by a direct offshore wind stress. The maximum peak
of ngG (Fig. 90) is less than 0.1 m .The estimated period of ng for

this run is 32 h.
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The relationship between the magnitude of ng and the net volume
volume transport through the ports discussed in the simulation of
hurricane Allen is reinvestigated. Figures 91 through 93 show the
barotropic volume transport through the Florida port and Yucatan
Strait, and the difference of the two components obtained from the
HURLl, HUR4 and HUR25 simulations, respectively. It can be seen from
the figures that the larger the net volume transport through the
ports the larger the magnitude of ng- This result should be expected
based on continuity. The first maximum of the total volume transport
for HUR4 is approximately 10 x 108 m3/s which is about a factor of 2
larger than that produced by HURlL. The same ratio of maximum ng
obtained from the two storms provide quantitative evidence for
relating ng to the net periodic transport. Note that the volume
transport from the HUR25 simulation and the associated ng is very
small. The initial position of this storm and associated wind field
gives smaller flows through the two openings as compared to HUR1l and
HUR4 .

The average period of the net periodic volume transport in each
case is about the same as the period of the corresponding ng Signals.
The ng signal however, is approximately 90° out of phase (lag) with
the total periodic transport. This result resembles the uninodal
seich in a one dimensional channel. However, the ubiquity of the ngG
signal in the hydrographs around the Gulf implies that the net
periodic transport acts like a single port forcing and excites the
entire Gulf proper to oscillate with a node at the port. 1In other

words, the ng oscillation is a Helmholtz mode excited by the net
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periodic transport through the ports.

Table 2 summarizes the peak surge at the digitized coastline for
each storm. Locations where the peaks occur are given in terms of
the grid point (I,J). The peaks and periods (TG) of the G signal
obtained from each case are given in columns 7,8 and 13,14. The time
lag of the first maximum of 75q after the center of the storms entered

Yucatan Strait, 6G, is also given in Table 2.
5. Long period variation of ng
a) The 3.4 day volume mode

The ng signals obtained from all the synthetic storm simulations
have a long pericd variation superimposed on their average 28 h
period. This slow variation is not readily observable except for the
one generated by HURS5. Therefore, model HURS was used to investigate
this long period variation of the Helmholtz mode (ng). This
simulation used the same storm characteristics of the original HUR5S
hurricane. However, forcing was allowed only over the first 3 days
22 h of the simulation. The calculations were continued for a total
of 21 days to provide a clear history of the free modes in the Gulf
and Cayman Sea. Time histories of the mean external height anomalies
of the two basins over the full simulation period are shown in Fig.
94, The arrow indicates when all forcing was set to zero. At this
time HURS was centered at 25.44° N and 90.86 W.

The most striking feature of this simulation is the very long
mode which dominates the Cayman response. The period of this mode is

approximately 3.4 days. The half-cycle means of 55 over the last 7
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days of the simulation correspond very closely to the 3.4 day mode of
the Cayman Sea. This implies a complicated response of the Gulf-
Cayman Sea system which oscillates in unison at a period of 3.4 days.
Simultaneously the Gulf of Mexico exhibits a 28 h volume mode
superimposed on the long period oscillation. The latter mode can
clearly affect the time-dependent amplitudes assigned to NG+

The intriging questions of course concern the nature of the 3.4
day oscillation. Definitive answers are outside the scope of this
research., However, the influence of the earth's rotation could be so
readily evaluated that it was decided to repeat the above simulation
with the Coriolis acceleration set to zero. These results are shown
in Fig. 95.

The 3.4 day mode was not excited in the non-rotating Gulf and
Cayman basins. Inspection of the -accompanying digital means did not
reveal a discernable 3 day mode. Moreover, the digital time series
show that the 28 h volume mode in the Gulf was reduced to amplitudes
on the order of a centimeter.

Notice that the paired histories of water level with (cf. Fig.
94, p. 158) and without (Fig. 95) rotation are different over the
entire period of forcing (first 3 days 22 h). This suggests that the
excitation mechanism for the Helmholtz mode in the Gulf and the 3.4

day Gulf-Cayman system mode is contingent on the earth's rotation.
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b) The 6.5 day tilt mode

Time histories of volume transport obtained from the 21 day
simulation of HUR5 with rotation are presented in Fig. 96. A
prominent feature is the 6.5 day period oscillation for the
transports through both Florida and Yucatan Straits.

The water level from this long simulation was sampled at 12
stations, six of which are the same as those given in Fig. 12. The
remaining six stations are Panama City, Tampico, Coatzacoalcas, Dimas
(northern coast of Cuba), Central Gulf, Eastern Gulf and Western
Gulf. The hydrograph at Key West (Fig. 97) shows a strong 6.5 day
mode with an average amplitude of 0.50 m. Superimposed on this long
period mode is the 28 h volume mode. Careful inspection of the
remaining hydrographs indicates the presence of the 6.5 day
oscillation but with a much smaller amplitude as compared to that in
the Key West hydrograph. Hydrographs at Galveston (Fig. 98) and
Dimas (Fig. 99) show that the water levels at the two stations are
180° out-of-phase. For example, at 1600 h on day 8 the water level
at Galveston is 0.05 m while at Dimas it is -0.05 m. The three deep-
water hydrographs are near zero at this time (note that the Central
Gulf station is approximately midway between Dimas and Galveston).
This 0.1 m differential in water surface elevation is possibly a
geostrophic tilt since all the forcings were set to zero well before
this time. Large space and time scales and a small surface
expression are indicative of a vorticity (or quasi-geostrophic tilt)

mode.
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Y West obtained from the long term simulation of HURS

Time sequence of water levels at Ke

Fig. 97.

The datum is mean sea level.
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Day
(Cuba) obtained from the long term simulation of

Time sequence of water levels at Dimas
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A simple geostrophic calculation using an instantaneous volume
transport through Florida Strait at 1600 h on day 8 of 30 x 108 m3/s
and an average depth across the port of 950 m yield a northward
surface gradient from Cuba of 0.2 m. A similar computation for the
Yucatan Strait yields a surface gradient toward Campeche Bank of only
0.07 m. The surface height field is not available for comparison.
However, using the mean water levels at Dimas and Key West as a rough
representation of the north-south surface component of gradient
reveals that the tilting of water surface across Florida Strait is on
the order of 0.5 m. This result is much larger than that obtained
from the simplified geostrophic calculation. It is quite possible
that the current speed is not uniform across the ports. An estimate
of the effect of current shear on the cross-port surface gradient by
numerically integrating the geostrophic equation across the port was

made. This integration is given by the relation
Nye1 = N4 7 (AYfU/ng...%) ' (79

where U is the transport per unit width for each grid block across
the Florida Strait and Dj+% is the average depth for each block.

Upon assuming uniform distribution of transport across the port, U is
Q/W where Q is the total volume transport and W is the port width.
Employing the same value of Q as in the previous calculation and
taking the water level at Cuba (south of Key West) as zero yields a
surface gradient between Key West and Cuba of 0.5 m. For the Yucatan
Strait the tilting of water surface between Cuba and the east coast

of Yucatan obtained from this computation is 0.26 m. Even though Q
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is the same at both ports, Yucatan channel is much deeper than the
Florida port so that the computed surface gradient is smaller. There
is no hydrograph on the east coast of Yucatan for comparison in this

case.

6. Results from related simulations

a) Variation of pressure drop

All the synthetic storms employed a constant pressure drop of 80
mb. As a sensitivity test of the model, simulations of HURS with a
40 mb (HURS5W) and a 120 mb (HUR5S) pressure drop were made. Maximum
surges of 3.59 m and 9.35 m were generated in the simulations of
HURSW and HURSS, respectively. Figure 100 displays the maximum surge
as a function of pressure drop obtained from all simulations of HURS.
This result is consistent with Jelesnianski's (1972) inference that
the peak surge is almost a linear function of the pressure drop.

Plots of ng obtained from the HURSW and HUR5S simulations are
shown in Figs. 101 and 102, respectively. The maximum peak and the
periocd of this oscillation are 0.2 m and 27 h for the weak storm and
0.6 m and 27 h for the intense storm.

Note that the HURSW simulation yields a larger magnitude of G
compared with HUR25 despite its smaller pressure drop. This implies
that a major factor governing the magnitude of the ng from these
simulations is the differential wind-driven volume transport through

Florida port and Yucatan Strait.
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b) Barotropic model

It is important to ascertain the effects of the baroclinic
response in deep water on the maximum surge at the coast since both
barotropic and baroclinic modes are coupled through the gradient
terms, V(Hl/D). Therefore, an additional simulation of HURS was
repeated which excluded the baroclinic mode.

A maximum peak surge of 6.42 m at grid point (14,46) was
obtained from this simulation. This peak is only eight tenths of a
centimeter lower than that obtained from the two mode simulation of
this storm. Comparisons of the simulated hydrographs from the
barotropic model and the original HURS reveal that the baroclinic
response does not produce a significant contribution to the
barotropic response on the shelf except at Key West, Naples and St.
Petersburg. The solid and dashed lines in Fig. 103 and 104,
respectively, represent the computed hydrographs obtained from the
two mode and pure barotropic mode simulations at the indicated
stations. The reason that this effect is visible on the Florida
shelf rather than other locations may be due to a larger baroclinic
transport (through the Florida strait) and a stronger coupling as a
result of steeper slopes at the Florida shelf break.

As expected, the Gulf-wide oscillation as shown in Fig. 105
obtained from this simulation is only slightly different from that

obtained from the two mode run.
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¢) Radiation boundary condition

The effects of the open boundary condition employed in this
study on ng was of primary concern. In order to evaluate this
effect, a pure radiation boundary condition was imposed in the
simulations of HUR5, HUR23 and hurricane Allen. The names of these
storms modified by (R) are used in the following discussions to
distinguish them from their corresponding original simulations.

Figures 106 through 108 show the time histories of ng obtained
from the simulations of HUR5(R), HUR23(R) and hurricane Allen(R),
respectively. Only the NG Signal obtained by averaging water levels
in the Gulf is shown in the figures (note the changes in height
scale). The radiation condition at the open boundaries effectively
radiates ng out of the Gulf. The peaks of ngr Sequentially, are (.28
m, 0.14 m and 0.22 m for HUR5(R), BUR23(R) and hurricane Allen(R).
The estimated e-folding times of the damping rate are 34 h for
HUR5(R), 24 h for HUR23(R) and less than 10 h for hurricane Allen(R).
The radiation condition not only drastically damps the ng Signal but
also changes their periods. Reid and Whitaker (1981) experimentally
determined the damping rate of the volume mode in the GOMT model to
be 2.81 x 107 g1 or an e-folding time of 2.6 days. The radiation
condition employed in the GOMT model has a complex admittance
coefficient in which the imaginary part governed the effective added
mass of adjoining seas. The radiation condition employed in this
study is a special case where only the real part of the admittance is
considered. Exclusion of the imaginary part results in a much larger

damping rate of the volume mode as found in this study. However, the
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initial perturbation of ng before the maximum peak surge is retained,
but is reduced on the order of 30 %. Changes in the maximum peak
surge at the coast are shown in Table 3. The magnitudes of G
(InGl), determined at the time of the maximum peak at the coast, are
shown in column 5. The differences of Ing| between each pair of
simulations are shown in column 6. The superscript plus or minus
indicates whether |ng| obtained from the simulations with the
radiation condition is larger or smaller with respect to the former
result. The differences in lnGI are clearly responsible for the

changes in maximum peak surge at the coast.
d) Limited area model

Results obtained from the simulations of the hurricanes of
record and the synthetic storms strongly indicate close correlation
between the generation of a simultaneous Gulf-wide oscillation and
the net periodic volume transport through the ports. It is of
interest, therefore, to determine whether ng Still exists in the
absence of wind stress in the deep water, including Florida and
Yucatan Straits. Therefore, simulations of HUR5, HUR23 and hurricane
Carla were repeated with a modified wind field where the wind
Stresses are set to zero everywhere in the deep water (water depth
greater than the upper layer thickness). The continental shelf
regions of these modified HURS5, HUR23 and Carla resemble limited area
coastal or shelf surge models. In the following discussion these
models are referred to as limited area models and their designated

names are followed by (L).
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Table 3. Results of the simulations of HURS5, HURZ3 and hurricane
Allen with and without radiation boundary condition.

PEAK PEAK  RATIO OF
STORM  COAST ng PEAK n, Ingl blng]
(m) (m) (m) (m)
HURS 6.50 0.40 0.35 _
0.70 0.20
HUR5(R)  6.31 0.28 0.15
HUR23 8.52 0.23 0.10 .
0.74 0.10
HUR23(R) 8.61 0.14 0.20
ALLEN 2.40 0.35 -0.10 N
0.69 0.20
ALLEN(R) 2.65 0.22 0.10
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The Gulf-wide oscillation is still excited in the absence of
wind stresses in the deep water. The time sequence of the g
response obtained from the simulation of HURS(L) is shown in Fig.
109. The maximum peak of this signal is 0.2 m and the average period
is 28 h. Magnitudes of ng Oobtained from the simulations of HUR5 and
HUR5(L) differ by a factor of 2. Neglecting the deep-water wind
driven flow produces a dramatic drop of the total transport through
the ports for HUR5(L) as compared to HURS (not shown). The volume
transport through both Florida and Yucatan Straits obtained from
HUR5(L) is caused by the tilting of the water surface toward storm
center due to the atmospheric pressure.

Simulation of HUR23(L) yields an ng response (Fig. 110) that is
almost identical to that obtained from HUR23. Comparison of the time
histories of the volume transports obtained from the two runs (not
shown) reveals that the net periodic volume transports are about the
same (6.6 x 10° m3/s) at their first maxima. Figure 111 shows the
gulf wide oscillation obtained from hurricane Carla(L) simulation
which is again comparable to that obtained from the original
hurricane Carla result. The initial positions of HUR5 and hurricane
Carla appear to be a key factor in the almost duplicate Ng responses
generated by the limited area model and the complete model. Both
storms are initially located closer and more directly to the south of
Yucatan Strait as compared to HUR5. The stronger atmospheric
pressure gradient through Yucatan channel is apparently more

effective in drawing water through this opening.
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Another important result found in the three limited area model
simulations is the appreciable water surface elevation obtained at
the edge of the shelf. This water level perturbation, excluding the
inverted barometric height at the edge of the shelf, ¥, reaches a
maximum of 0.1 m - 0.3 m. In the simulations of the same storms with
the actual wind field, the maximum ¥ increases to 0.7m - 0.8 m. The
maximum of ¥ and the peak surge at the coast, locations where the two
peaks occur and the ratio of the two peaks obtained from all
simulations are presented in Table 4.

It is important to note that the differences in the maximum peak
surges at the coast between the full and limited area model
simulations are comparable to the differences in the ¥ maxima. The
presence of ¥ is important to a properly posed open boundary
condition for limited area coastal surge models, Generally, these
models neglect ¥ by specifying a constant water level, which is
equivalent to the inverted barometric height, as the open boundary
condition. As noted above, this condition might result in an
underestimated maximum peak surge at the coast by a value comparable
to the neglected #. Another salient feature of ¥ pertaining to the
consideration of open boundary conditions is the nonuniform
distribution along the shelf break. Figs. 112 through 114 show
profiles of ¥ obtained from the original versions of HURS, HUR23 and
hurricane Carla. The nonuniformity of these profiles implies that
the effect of ¥ on the peak surge at the coast is different from one
grid block to the other. This result ultimately prompted a question

on specifying a constant water level along the shelf break as the
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open boundary condition. The time at which the maximum ¥ occurs,
shown at the top of the figures, introduces the time scale as another
factor to be considered. In addition, the results shown in Table 4
indicate that the magnitude of ¥ decreases with increasing storm
forward speed. Accordingly, there appears to be no simple resoclution
to the question of what is the proper open boundary condition for
limited area coastal surge models. A possible pragmatic solution is
to use the time sequence of water levels at each grid point along the
shelf break obtained from an a priori simulation covering the entire

basin.
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CHAPTER V

SUMMARY AND CONCLUSIONS

A time-dependent, numerical, normal mode model portraying the
linear (except for dissipation) physics of a two layer Gulf of Mexico
has been developed, tested and verified. Comparisons of the
numerical hydrographs and the known local responses produced by
hurricanes Carla and Allen generally verify the barotropic surge
response within the Gulf of Mexico. Those significant deviations
which occur can be explained by unique gauge locations,
insufficiently resolved model renditions of the coastline and
bathymetry, and possible inaccuracies in the stipulated atmospheric
forcing fields. The model was used to obtain the responses of the
Gulf to a series of synthetic storms. These responses provided
information which were used to answer basic questions on forerunner
surges in the Gulf and related aspects of the surge prediction
problem. These questions concerned the influence of baroclinic
motions on the nearshore surge, the establishment of forerunners and
the time and space scales of this initial rise in water level, and
surge conditions at the shelf break.

Results from the simulations of the pure barotropic and the two
mode models of HURS (a synthetic storm with 30 km radius of maximum
wind translating at 35 km/h from the Cayman Sea through Yucatan
Strait and landfalls at Corpus Christi, PATH1) demonstrate the
insignificant contribution of the baroclinic responses to the water

levels on the shelf areas. The maximum surges in particular are

191



scarcely affected by the baroclinic deep-ocean responses in spite of
the fact that such modes contain significant energy. In addition,
the initial rise of water level before the peak surge (which, by
definition, is the forerunner)in the Galveston hydrographs obtained
from the two versions of HUR5 show no visual differences. Based on
these results, the baroclinic response is not important in the
forerunner surge phenomenon.

The quasi-linear, coupled, normal mode model shows that the
hurricane induced forerunner surge in the Gulf of Mexico is
associated with a Gulf-wide oscillation of water level, ng. The
ubiquity of the ng signal in the hydrographs from stations around the
Gulf, except near Florida Strait, indicates that ng is dominated by a
volume (i.e., Helmholtz) mode. The Helmholtz mode is characterized
by a relatively uniform amplitude and phase, except near the open
ports where the amplitude and phase changes rapidly. The forerunner,
therefore, has space scales comparable to the horizontal dimensions
of the Gulf of Mexico.

Examination of the transport through the ports, particularly for
the 21 day simulations for PATHL, reveal large and nearly equal
amplitude but out-of-phase oscillations of about 6.5 day (156 h)
period. Superimposed on the 6.5 day oscillations are smaller
amplitude in-phase oscillations with a period of about 28 h. The out-
of-phase transport implies that when the transport is in one port it
is out of the other. It is the in-phase oscillations in transport
which are associated with the Helmholtz mode in the Gulf. The long

period out-of-phase oscillations in transport, on the other hand, are
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associated with a quasi-geostrophic tilt of water level across the
ports as well as a tilt from southeast to northwest across the Gulf.
The 6.5 day period oscillations coincide with the natural modes on
the west Florida shelf (Marmorino, 1982). The excitation of the out-
of-phase transport and associated quasi-geostrophic tilt mode in the
present model is due to out-of-phase wind forcing at the ports (as
can be produced by the cyclonic circulation in those hurricanes which
traverse the Cayman Sea). Observational evidence to confirm the
existence of the 6.5 day mode in the actual Gulf is lacking (e.g.,
the Key West gauge records do not show clear evidence for the large
amplitude 6.5 day oscillations which the model simulations for
hurricane Allen or HURS produce). However, except for locations near
the ports, the water level variations associated with the 6.5 day
tilt mode are small (less than 0.1 m along the northern and western
coast of the Gulf). Hence the gquasi-geostrophic tilt mode is
probably not important with respect to forerunners in the northern
and western parts of the Gulf.

Close examination of the G time sequences for the long term
simulations for PATH1 show that, in addition to the presence of the
Helmholtz mode, a period of about 3.4 days is also present. But
there is very little evidence of the 6.5 day tilt mode in G- The
3.4 day mode in fact shows up in the time history of the spatial mean
water level for the Cayman Sea. Some observational evidence for such
a mode of oscillation exists for the Gulf (Halper, 1984, Kelly, 1985,
Kirwan et al., 1984). The relative excitation of these modes during

the forcing stage by hurricanes depends upon the path, the storm
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scale and intensity, and to a lesser extent on the translational
speed of the hurricane. In general, the ng during the first few days
after the hurricane enters the Gulf consists of three components.

The first two components (i.e., the Helmholtz mode and the 3.4 day
Gulf-Cayman mode) are associated with the volume transport through
the ports. The third component is a directly forced response
associated with the spatial average value of b (the inverted
barometer term) over the Gulf. PATHl tends to give the largest peak
ng. particularly for larger radius storms (compare HURL and HUR4
results).

Results from the limited area model and the full model disclose
that both the central pressure deficit and the wind induced
transports through the ports can excite the Helmholtz mode. However,
the relative importance of the two forcing fields in generating ng
depends upon the storms' paths and their evolution. The almost
identical ule obtained from the full and limited area models of
hurricane Carla and HUR23 show that the atmospheric pressure gradient
through Yucatan Strait was more important in the generation of ng
than the wind forcing. 1In contrast, the small ne response in the
absence of wind in deep water for HURS5(L) implies that in this case
wind forcing was the major factor in generating nge

The average periods of the Helmholtz mode from this study are in
the range of 25-32 hours. Platzman (1972) obtained a free Helmholtz
mode with a period of only 21.2 hours. This difference in periods is
due to the fact that ng is composed of both forced and free

components. The average period of 28 hours obtained from the 21 day
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simulation of HURS was estimated during the later stage of the
simulation for which the forced component of NG probably has been
damped out. The variation of the period of ngs from one simulation
(of the original synthetic storms HUR1 through HUR25) to the other
may be caused by the variation of the period of the forced component
which is subjected to different forcing. There is some indication
that the period of ule is smaller for a faster moving storm. Based on
the Gulf mean tidal response in the diurnal band, the GOMT model of
Reid and Whitaker (1981) used a 28,5 hour Helmholtz mode. Their
volume mode period was adjustable because the radiation boundary
condition employed in the GOMT model effectively takes into account
the added mass of the Cayman Sea (including the Atlantic Ocean) by
means of a complex ocean impedance. The 28.5 hour period used by
Reid and Whitaker (198l1) is close to the average period of the free
component of NG obtained from this study.

It is likely that Gulf hurricanes in general elicit the
Helmholtz mode and the longer period modes, but only certain storms
generate a forerunner. With the definition of a forerunner as the
initial rise of water level before the peak surge, storms traversing
PATH4 do not generate forerunner surges but certainly excite ng. The
synthetic storm HUR25 (along PATHS5) serves as another example of the
situation where ng exists but with no forerunner. The presence of a
forerunner in local hydrographs is therefore dependent upon the path,
but is also dependent on the landfall position and the time of the
excitation of g relative to the peak surge. This would explain why

every hurricane of record does not have an associated forerunner.
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For example, a fast moving hurricane, which is generated inside the
Gulf might have an associated initial peak of nG which is nearly in
phase with the primary shelf surge.

A supplementary question addressed in the present study concerns
the surge behavior at the shelf break. This is at least as important
as the forerunner behavior for limited area models. In many
applications of surge models the domain of the model is limited to a
section of the continental shelf extending seaward from shore to the
shelf break (about 200 m depth). A common boundary condition
employed in such limited area models is to set the water level (7)
equal to the local value of b for a given time during the traverse of
the hurricane through the model domain. The present study in which
the whole Gulf of Mexico (and part of the Cayman Sea) is modeled,
shows that the water level at the shelf break can depart
significantly from b at the shelf break. Moreover, this departure
(n—b)s has a behavior differing from that of 55 and generally of
larger magnitude. For example, large scale (Rmax = 60 km) hurricane
simulations along PATH4 yield larger values of (n—b)s than do those
along PATHL; this is just the opposite behavior of ng for these two
paths.

In order to gain some further insight with respect to the shelf
break condition, three hurricane runs (HURS, HUR23 and Carla) were
repeated with the winds turned off in the deep region of the Gulf and
Cayman Sea (i.e., for depths greater than Hy). This is equivalent to
having a limited area shelf model (including all shelves in the

system) but allowing wave energy to radiate into the deep Gulf.
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Comparison of the ng (i.e.,at the shelf break) from these runs with
their counterparts for the fully forced model shows that there
remains a significant difference (of order of 0.4 m) in the peak
values.

The primary conclusions of this study can be summarized as

follows:

(1) The surge on the shelf including the forerunner
is primarily a barotropic response; very little of the
baroclinic energy generated within the deep water regions is
transmitted onto the shelf.

(2) The forerunner, when it occurs, is associated primarily
with the Gulf-wide modes contained in ng (the spatial
average of the Gulf water level at a given time); this is a
volume mode which exhibits periods of about 28 hours and 3.4
days.

(3) Forerunners are always associated with ngs, but not all
hurricanes which excite ng have an associated forerunner.
Regardless of whether or not forerunners exist, ng can, if
properly phased, affect the magnitude of the peak surge.

(4) Limited area shelf models (at least within the Gulf of
Mexico), which employ the seaward boundary condition n = b
(or the generalization of this which allows outward
radiation of free waves) will always underestimate the peak
surge at shore; the underestimate can amount to as much as

10 percent.
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(5) A Gulf-wide quasi-geostrophic tilt mode of about 6.5 day
periocd is found in the model superimposed on the volume
mode, but verification of this from observations is lacking.

The above conclusions are based on a guasi-linear, two-layer

model of the Gulf of Mexico and a portion of the Cayman Sea. The
model used a grid size of 15' in latitude and longitude and allowed
for a variable Coriolis parameter. The lack of non—linear advection
and the ad hoc conditions at the open boundaries of the Cayman Sea
and Florida Strait should be borne in mind, particularly with regard
to conclusion (5). Long period, quasi-geostrophic (planetary) modes
are known to exist in the ocean; however, their spatial structure
and behavior is known to be sensitive to open boundary conditions and
to non-linear phenomena such as advection of vorticity (which is not
admitted in the present model). Indeed, the effect of the strong
quasi-steady Loop Current within the eastern Gulf is missing in the
present linear model. Regardless of these limitations, it is felt

that conclusions (1) through (4) remain valid.

198



REFERENCES

Buffler, R.T., S.D. Locker, W.R. Bryant, S.A. Hall and D.H. Pilger
Jr., 1984: Ocean Margin Drilling Program Regional Atlas Series,
Gulf of Mexico, Atlas 6, Marine Sci. /nternat., Woods Hole, 36 pp.

Chang, S.W. and R.A. Anthes, 1978: Numerical simulations of the
oceans's nonlinear baroclinic response to translating hurricanes.
J. Phys. Oceanogr., 8, 468-480.

Cline, I.M., 1920: Relation of changes in storm tides on the coast of
the Gulf of Mexico to the center and movement of Hurricanes.
Mon. Wea. Rev., 48, 127-145.

Dunn, G.E. and staff, 1962: The hurricane season of 196l1. Mon. wea.
Rev., 90, 107-119.

Geisler, J.E., 1970: Linear theory of the response of a two layer to
a moving hurricane. Gephys. Fluid Dyn., 1, 249-272.

Halper, F.B., 1984: The effect of storms on the sediment resuspension
and transport on the outer continental shelf, Northwest Gulf of
Mexico. Ph.D. Dissertation, Dep. Oceanogr., Texas A&M University.,
131 pp.

Ho, F.P. and J.F. Miller, 1980: Pertinent meteorological data for
Hurricane Allen of 1980. NOAA Tech. Rep. NWS-32, Silver Spring,
MD, 50 pp.

Holland, G.J., 1980: An analytic model of the wind and pressure
profiles in hurricanes. Mon. Wea. Rev., 708, 1212-1218.

Ichiye, T., 1955: On the variation of ocean circulation (V).
Geophys. Mag. (Tokyo Japan), 26, 283-342.

. H.H. Kuo and M.R. Carnes, 1973: Assessment of currents and
hydrography of the Eastern Gulf of Mexico. Contri. 607, Texas
A&M University.

Jelesnianski, C.P., 1972: SPLASH (Special Program to List Amplitudes
of Surges from Hurricanes) I. Landfall Storms. WNOAA Tech. Memo.
NWS TDL-46, Silver Spring, MD, 52 pp.

Kelly, F.J., 1985: Offshore oceanographic and environmental
monitoring services for the Strategic Petroleum Reserve, II,
Annual Rep. for the Bryan Mound site from Sept. 1983 through Aug.
1984, Texas A&M University, 434 pp.

199



Kirwan, A.D., W.J. Merrell Jr., J.K. Lewis and R.E. Whitaker, 1984:
Langrangian observations of an anticyclonic ring in the Western
Gulf of Mexico. J. Geophys. Res., 89, 3425-3438.

Lawrence, M.B. and J.M. Pelissier, 1981: Atlantic hurricane season of
1980. Mon. Wea. Rev., 709, 1567-1582.

Leipper, D.F., 1967: Observed ocean conditions and Hurricane Hilda,
1964. J. Atmos. Sci., 24, 182-196.

Leendertse, J.J., 1967: Aspects of a computational model for long
period water wave propagation. 7he Rand Coporation, Santa Monica,
RM-5294-PR, 165 pp.

Marmorino, G.0., 1982: Wind-forced sea level variability along the
West Florida Shelf (Winter, 1978). J. Phys. Oceanogr., 12, 389-405.

Miyasaki, M., 1963: A numerical computation of the storm surge of
Hurricane Carla in 1961 in the Gulf of Mexico. Tech. Rep. 10, Dep.
Geophys. Sci. University of Chicago, 61 pp.

Muller, P. and C. Frankignoul, 1981: Direct Atmospheric forcing of
geostrophic eddies, J. Phys. Oceanogr., 11, 287-308.

Platzman, G.W., 1972: Two dimensional free oscillations in a natural
basin. J. Phys. Oceanogr., 72, 117-138.

Redfield, A.C. and A.R. Miller, 1957: Water level accompanying
Atlantic coast hurricanes. Meteo. Mono., 2, 1-23.

Reid, R.0., and B.R. Bodine, 1968: Numerical model for storm surges
in Galveston Bay. Proc. ASCE, J. Waterway and Harbors Div., 94,
WW7, paper 5805, 33-~57.

and R.E. Whitaker, 1981: Numerical model for astronomical
tides in the Gulf of Mexico. Unpub/. Rep. submitted to (/.S. Army
Waterways Experiment Station under contract DACW39-79-C-0074.

Saylor, J.H., J.C. Huang and R.0.Reid, 1980: Vortex modes in southern
Lake Michigan. J.Phys. Oceanogr., 10, 1814-1823.

Schwerdt, R.W., F.P. Ho and R. Watkins, 1979: Metecorological criteria
for standard project hurricane and probable maximum hurricane wind
fields, Gulf and East Coast of the United State. NOAA Tech. Rep.
NWS-23, Silver Spring, MD, 317 pp.

Stevenson, R.E. and R.S. Armstrong, 1965: Heat loss from the waters

of the Northwest Gulf of Mexico during Hurricane Carla. Geophys.
[nternat. (Mexico City, Mex.), 5, 49-57.

200



Veronis, G. and H. Stommel, 1956: The action of variable wind stress
on a stratified ocean. J. Mar. Res., 15, 43-75,

Wanstrath, J.J., 1975: Storm surge simulation in transformed

coordinates. Ph.D. Dissertation, Dep. Oceanogr., Texas A&M
University, 190 pp.

201







	Part 1 (68)
	Part 2 (62)
	Part 3 (44)
	Part 4 (46)



